Synthesis and SAR of Novel 4-Morpholinopyrrolopyrimidine Derivatives as Potent Phosphatidylinositol 3-Kinase Inhibitors

Zecheng Chen,^{*,†} Aranapakam M. Venkatesan,[†] Christoph M. Dehnhardt,[†] Semiramis Ayral-Kaloustian,[†] Natasja Brooijmans,[†] Robert Mallon,[‡] Larry Feldberg,[‡] Irwin Hollander,[‡] Judy Lucas,[‡] Ker Yu,[‡] Fangming Kong,[§] and Tarek S. Mansour[†]

[†]Chemical Sciences, [‡]Oncology, and [§]Analytical Quality Sciences, Wyeth Research, 401 N. Middletown Road, Pearl River, New York 10965

Received December 1, 2009

Significant evidence suggests that deregulation of the PI3K/Akt pathway is important in tumor progression. Mechanisms include loss of function of the tumor suppressor PTEN and high frequency of mutation of the PI3K p110 α isoform in human malignancies. This connection between PI3K and tumor genesis makes PI3K a promising target for cancer treatment. A series of 4-morpholinopyrrolopyrimidine derivatives were synthesized and evaluated as inhibitors of PI3K α and mTOR, leading to the discovery of PI3K α selective inhibitors (e.g., 9) and dual PI3K α /mTOR kinase inhibitors (e.g., 46 and 48). PI3K α /mTOR dual inhibitors demonstrated inhibition of tumor cell growth in vitro and in vivo and caused suppression of the pathway specific biomarkers [e.g., the phosphorylation of Akt at Thr308 (T308) and Ser473 (S473)] in the human breast cancer cell line MDA361. In addition, compound 46 demonstrated good in vivo efficacy in the MDA361 human breast tumor xenograft model.

Introduction

Phosphatidvlinositol-3-kinases (PI3Ks^a) are lipid kinases that catalyze phosphorylation of the 3-hydroxy position of PIP2 (phosphatidylinositol 4,5-diphosphate) to PIP3 (phosphatidylinositol 3,4,5-triphosphate), an important second messenger modulating activity of the PI3K downstream effectors Akt and mTOR. The consequences of biological activation of Akt include tumor progression, proliferation, survival, growth, invasion, angiogenesis, and metastasis. Significant evidence suggests that the PI3K/Akt pathway is deregulated in many human cancers.¹ PI3Ks are divided into three classes (I, II, and III) based on differences in sequence homology, substrate preference, and function.^{2,3} The class I PI3Ks are heterodimers consisting of a catalytic subunit and a regulatory subunit. The catalytic subunits of class I PI3Ks include four isoforms: p110a, p110 β , p110 δ , and p110 γ , encoded by four distinct genes termed pik3ca, pik3cb, pik3cd, and pik3cg, respectively. The class I PI3Ks are further divided into class IA and IB subgroups based on different regulatory subunits and activation mechanisms. Class IA includes three isoforms PI3K α , PI3K β , and PI3K δ activated by receptor tyrosine kinases (RTKs) and small G-protein-coupled receptors (GPCRs), while class IB has only

one isoform, PI3K γ , primarily activated by GPCRs. The *pik3ca* gene, which encodes the catalytic subunit of PI3K α , is mutated and overexpressed in a wide range of human cancers, including breast, ovarian, colorectal, and brain tumors.^{4–7} In addition, the activation of the PI3K pathway is negatively regulated by dual phosphatase PTEN, and persistent activation of PI3K and loss of PTEN function often coexist in various cancers. All these factors provide strong evidence for the importance of the PI3K pathway in cancer.^{8–11} Therefore, the significant connection between PI3K, in particular PI3K α , with tumor genesis makes PI3K α an attractive target for development of anticancer drugs.

To date, several small molecule PI3K inhibitors (Figure 1) have been reported.¹²⁻²³ LY294002 (1a)¹⁴ and Wortmannin (1b)¹³ have been extensively studied as PI3K inhibitors; however, their toxicity and poor physicochemical properties limited their potential therapeutic use.

Recently an imidazo[4,5-c]quinoline derivative, NVP-BEZ235 (1c), was reported by Novartis as a pan-PI3K/mTOR dual inhibitor.^{22,23} Compound 1c was shown to block the activation of the PI3K pathway and potently inhibit cell proliferation, causing G1 phase cell cycle arrest, and is currently in phase I/II clinical trials as an anticancer agent. Compound PI-103 (1d), a pyrido[3',2':4,5]furo[3,2-d]pyrimidine derivative, was equipotent against PI3K α and PI3K β with an IC₅₀ of 4 nM and was selective over other tested protein kinases.¹⁸ Genentech recently reported the thieno[3,2-d]pyrimidine derivative GDC-0941 (1e), a potent and orally bioavailable inhibitor of PI3K, in phase I clinical trials for the treatment of cancer. Notably, compound 1e was equipotent against wild type PI3Ka and two common PI3Ka mutants (E545K and H1047R) with an IC₅₀ of 3 nM.²¹ As part of our ongoing research on a variety of fused-pyrimidine scaffolds,²⁴⁻²⁷ we now report the synthesis and biological evaluation of novel

^{*}To whom correspondence should be addressed. Phone: 1-845-602-8341. Fax: 1-845-602-5561. E-mail: chenz1@wyeth.com or chenzecheng@ hotmail.com.

^{*a*} Abbreviations: PI3K, phosphatidylinositol 3-kinase; mTOR, mammalian target of rapamycin; Akt, protein kinase B; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-triphosphate; PTEN, phosphatase and tensin homologue; RTK, receptor tyrosine kinase; GPCRs, G-protein-coupled receptors; PDK1, 3-phosphoinositide-dependent kinase 1; S, serine; T, threonine; ATP, adenosine 5'-triphosphate; Her2+, human epidermal growth factor receptor 2+; ELISA, enzyme-linked immunosorbent assay; DELFIA, dissociation-enhanced lanthanide fluorescent immunoassay.

Figure 1. Structures of PI3K inhibitors.

Scheme 1^{*a*}

^{*a*} Reagents and conditions: (a) morpholine (1.5 equiv), Et₃N (3 equiv), CH₂Cl₂, room temp, 6 h; (b) ArB(OH)₂ (1.5 equiv), Pd(Ph₃P)₄ (5 mol %), DME, 2 N Na₂CO₃, 110 °C/30 min, microwave; (c) DMF ·DMA (excess), DMF, 110 °C/12–18 h; (d) 10% Pd/C, MeOH, room temp, 2–6 h; (e) formaldehyde (2 equiv), amines (3 equiv), HOAc, 60 °C/6 h; (f) TBSCl (1.2 equiv), imidazole (1.5 equiv), DMF, 80 °C/15 min, microwave; (g) CH₃I (1.2 equiv), NaH (2 equiv), THF, room temp, 2 h; (h) TFA, CH₂Cl₂, room temp, 6 h; (i) 4-piperidone (2.5 equiv), KOH (5 equiv), MeOH, 66 °C/15 h; (j) 10% Pd/C, HCl, MeOH, 50 psi, room temp, 16 h; (k) ArCHO (1.5 equiv), ZnCl₂ (1.5 equiv), NaBH₃CN (1.5 equiv), MeOH, room temp, 5 h.

4-morpholinopyrrolopyrimidine derivatives as potent PI3Kα inhibitors.

Chemistry

The general synthetic route for the preparation of 4-morpholinopyrrolo[3,2-*d*]pyrimidine derivatives is shown in Scheme 1. The starting material 2,4-dichloro-6-methyl-5-nitropyrimidine (2) was treated with morpholine to give the corresponding 4-morpholino substituted intermediate 3, which was reacted with different boronic acids or esters under Suzuki conditions to provide the corresponding 2-aryl substituted products. Reaction with 1,1-dimethoxy-*N*,*N*-dimethylmethanamine (DMF·DMA) to form the corresponding enamine intermediate followed by the reductive cyclization under catalytic hydrogenation conditions gave the desired 5*H*-pyrrolo-[3,2-*d*]pyrimidines **4**–**7**. Mannich-type reaction of **4**, by heating with formaldehyde and different amines in acetic acid solution, proceeded smoothly to yield compounds **8** and **9** with watersolubilizing groups introduced at the C7 position. Protection of the hydroxyl group with TBS in **4** followed by alkylation at the

Scheme 2^{*a*}

^{*a*} Reagents and conditions: (a) POCl₃, 120 °C/30 min, microwave; (b) morpholine (1.5 equiv), Et₃N (3 equiv), EtOH, room temp; (c) ArB(OH)₂ (1.5 equiv), Pd(Ph₃P)₄ (5 mol %), DME, 2 N Na₂CO₃, 150 °C/40 min, microwave; (d) 2-(dimethylamino)ethyl chloride (1.5 equiv), Cs₂CO₃ (3 equiv), DMF, 80 °C/12 h; (e) 4-aminophenylboronic acid, pinacol ester (1.3 equiv), Pd(Ph₃P)₄ (5 mol %), DME, 2 M Na₂CO₃, 130 °C/30 min, microwave; (f) triphosgene (0.6 equiv), Et₃N (3 equiv), amines (3–5 equiv), CH₂Cl₂, room temp, 2–6 h.

^{*a*} Reagents and conditions: (a) 4-aminophenylboronic acid, pinacol ester (1.3 equiv), Pd(Ph₃P)₄ (5 mol %), DME, 2 N Na₂CO₃, 130 °C/30 min, microwave; (b) triphosgene (0.6 equiv), Et₃N (3 equiv), 4-aminopyridine (5 equiv), CH₂Cl₂, room temp, 12 h; (c) CF₃CH₂I (2 equiv for **30**) or (CH₃O)₂CHBr (2 equiv for **31**), Cs₂CO₃ (1.2 equiv), DMF, 80 °C/12 h; (d) HCl, dioxane/H₂O, 70 °C/12 h (e) amines (6 equiv), ZnCl₂ (2 equiv), NaBH₃CN (2 equiv), MeOH, room temp, 12 h; (f) NaBH₄ (1.5 equiv), MeOH/THF, room temp, 2 h.

N5 position and removal of the TBS group afforded **10**, which underwent the Mannich-type reaction to give **11**. Aldol-type reaction of **6** with piperidin-4-one followed by catalytic hydrogenation of the resulting double bond provided derivative **12**. Reductive amination of **12**, using appropriate aldehydes and NaCNBH₃, gave compounds **13** and **14**.

The general synthetic routes used for the preparation of 4-morpholinopyrrolo[2,3-*d*]pyrimidine derivatives are outlined in Schemes 2–4. 7*H*-Pyrrolo[2,3-*d*]pyrimidine-2,4-diol (**15**) was prepared, following a known procedure,^{28,29} by condensing 6-aminouracil with chloroacetaldehyde. Chlorination of **15** by heating with POCl₃ followed by selective

substitution with the morpholino group at the C4 position provided intermediate 16. Suzuki coupling of 16 with different boronic acids gave compounds 17 and 18. Alternatively, alkylation of 16 with 2-(dimethylamino)ethyl chloride, using Cs_2CO_3 as base, gave intermediate 19. Reaction of 19 with different boronic acids provided 20 and 21. Suzuki reaction of 19 with 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline provided 22, which was converted to urea derivatives 23-28 by reaction with triphosgene followed by appropriate amines.

Conversion of intermediate 16 to the 4-pyridylurea analogue 29 was achieved by a two-step sequence, described above for the conversion of 19 to 23-28. Alkylation of 16 provided analogues 30 and 31, which were converted to the corresponding 4-pyridylurea derivatives 32 and 33. Hydrolysis of the acetal group in 33, under acidic conditions, gave the aldehyde 34. Reductive amination of 34, using different amines, provided compounds 35-39. Alternatively, reduction of the aldehyde group in 34, using NaBH₄, gave the corresponding alcohol analogue 40 (Scheme 3).

Suzuki reaction of the N7 substituted pyrrolo[2,3-*d*]pyrimidine intermediates **30** and **41** gave the corresponding anilines **42** and **43**. Treatment of **42** and **43** with methyl 4-isocyanatobenzoate, followed by hydrolysis of the resulting esters under basic conditions, gave the corresponding 4-ureidobenzoic acids **44** and **45**. Finally, coupling of the acids **44** and **45** with different amines afforded the desired 4-ureidobenzamide derivatives **46–52** (Scheme 4).

Results and Discussion

All final compounds **4–14**, **16–20**, **23–29**, **32–40**, and **46–52** were tested for in vitro potency in a PI3K α fluorescence polarization format assay²⁵ and mTOR in a dissociationenhanced lanthanide fluorescent immunoassay (DELFIA) platform enzyme-linked immunosorbent assay (ELISA).²⁶ Compounds that showed reasonable PI3K α potency were selected for further evaluation in the cell growth inhibition assays against PC3 (prostate, PTEN mutant) and MDA-361 (breast, Her2+/ PI3KCA [E545K] mutant) human tumor cell lines.²⁵

Scheme 4^a

^{*a*} Reagents and conditions: (a) 4-aminophenylboronic acid, pinacol ester (1.3 equiv), Pd(Ph₃P)₄ (5 mol %), DME, 2 N Na₂CO₃, 130 °C/30 min, microwave; (b) methyl 4-isocyanatobenzoate (1.2 equiv), CH₂Cl₂, room temp, 12 h; (c) 1 N NaOH (3 equiv), MeOH/THF, 70 °C/12 h; (d) amines (2 equiv), HOBt (1.5 equiv), EDCI (1.5 equiv), Et₃N (2 equiv), THF, room temp, 12 h.

Table 1^a

				IC50 (nM)		
compd	R_1	\mathbf{R}_2	R ₃	ΡΙ3Κα	mTOR	PC3
1f				63	634	1234
4	-CH ₂ OH	Н	Н	65	1625	2075
5	-CH ₃	Н	Н	1506	5000	ND
6	-OH	Н	Н	70	355	1551
7	-NH ₂	Н	Н	7500	430	ND
8	-CH ₂ OH	Н	$-CH_2N(CH_3)_2$	20	108	> 3160
9	-CH ₂ OH	Н	-CH ₂ -pyrrolinyl	21	3600	> 3160
10	-CH ₂ OH	Me	Н	1996	>4000	ND
11	-CH ₂ OH	Me	-CH ₂ -pyrrolinyl	4207	> 4000	ND
12	-OH	Н	4-piperidinyl	354	5900	ND
13	-OH	Н	1-benzyl-4-piperidinyl	340	2000	ND
14	-OH	Н	1-(4-F-benzyl)-4- piperidinyl	178	3650	1652

^{*a*} The values are averages of at least two separate determinations with a typical variation of less than $\pm 30\%$. ND: not determined.

The lead compound **1f**, an imidazolopyrimidine derivative, was previously prepared as a potent PI3K inhibitor.²⁴ It exhibited good PI3K α activity (IC₅₀ = 63 nM) and moderate cell potency against PC3 (IC₅₀ = 1.2 μ M), but this compound had low solubility, poor metabolic stability, and poor exposure. Replacement of the imidazole ring in **1f** with a pyrrole ring led to a series of 4-morpholinopyrrolo[3,2-*d*]pyrimidines (Scheme 1). The effects on PI3K α inhibitory activity of different substituents on the phenyl ring at C3 of the pyrrolo-[3,2-*d*]pyrimidine core are shown in Table 1. The 3-hydroxymethyl and 3-hydroxy analogues, **4** and **6**, showed equal potency against PI3K α , comparable to that of **1f**. Removal of the hydroxyl group in **4** led to a significant decrease in potency for **5**. Replacement of the 3-OH group in **6** with a 3-NH₂ group resulted in about 100-fold loss in potency for 7. The hydroxyl group in both 4 and 6 was found to be essential for PI3K α activity, indicating that it should be involved in protein binding as demonstrated in other fused pyrimidine series.^{21,24,25} Introduction of water solubilizing groups ($-CH_2NR_1R_2$) at the C7 position of 4 resulted in about a 3-fold increase in PI3K α potency for 8 and 9. Compound 9 showed very good selectivity (171-fold) for PI3K α over mTOR. However, incorporating a piperidine ring at the C7 position of 6 led to a 5-fold decrease in PI3K α potency for 12. Methyl substitution at the N5 position of the pyrrolo[3,2-*d*]pyrimidine core was not tolerated and resulted in a significant loss in activity. The *N*-methyl substituted analogue 10 was about 30-fold less potent than the corresponding NH analogue 4, while 11 was 200-fold less potent than the corresponding compound 9.

In the meantime, a series of 4-morpholinopyrrolo[2,3-*d*]pyrimidines were prepared by replacing the N5 of the imidazole ring in **1f** with "CH". The effects of different substituents on the phenyl ring and the N7 position on enzyme and cell potency are shown in Table 2.

As seen in Table 2, the 3-hydroxymethyl analogue 17 and the 3-hydroxyl analogue 18 maintained PI3K α inhibitory activity comparable to that of 1f. Introducing an amino side chain at N7 of 17 led to about a 2-fold increase in PI3K α potency for 20, while appending the same group on 18 led to a slight decrease in PI3K α potency for 21. Both analogues 20 and 21 exhibited much weaker potency against mTOR. In comparison with 1f, all four analogues in this series showed comparable or improved cell potency against PC3. It was found that this series of analogues showed good permeability, as well as good solubility except for 18.

Recent studies showed that the phenolic group was found to be a metabolic liability due to glucuronidation.^{21,26} Isosteres for the phenolic group were explored to achieve a metabolically stable clinical candidate.²¹ In addition, our own research teams have shown that incorporation of a urea appendage instead of the phenolic group in the fused pyrimidine core not only improved metabolic stability but also increased PI3K α potency and cell potency.^{24,25} Therefore, a series of 4-ureido Table 2^a

				$IC_{50}\left(nM\right)$			
compd	R	R_1	ΡΙ3Κα	mTOR	PC3	solubility (μ g/mL), pH 7.4	permeability (10^{-6} cm/s)
1f			63	634	1234	1	1.4
17	-CH ₂ OH	Н	80	205	1211	38	2.3
18	-OH	Н	43	64	580	2	0.9
20	-CH ₂ OH	-(CH ₂) ₂ N(CH ₃) ₂	42	>800	691	> 100	1.9
21	-OH	-(CH ₂) ₂ N(CH ₃) ₂	76	> 800	1181	> 100	2.0

^a The values are averages of at least two separate determinations with a typical variation of less than $\pm 30\%$.

Table 3^a

			$IC_{50}\left(nM ight)$			stability $T_{1/2}$ (min), ^b rat	
compd	R/Ar	ΡΙ3Κα	mTOR	PC3	solubility (µg/mL), pH 7.4		
1f		63	634	1234	1	2	
23	2-pyridyl	142	7	882	21	5	
24	3-pyridyl	16	3	137	52	9	
25	4-pyridyl	8	2	100	52	2	
26	4-F-phenyl	24	8	189	ND	ND	
27	Et	226	30	ND	> 100	8	
28	Me	54	33	437	> 100	9	

^{*a*} The values are averages of at least two separate determinations with a typical variation of less than $\pm 30\%$. ND: not determined. ^{*b*} Half-life of drug when incubating with rat liver microsomes.

analogues were prepared by replacing the 3-hydroxyl group on the phenyl ring, and their biological data are shown in Table 3.

Among the various pyridyl substituted ureas, the 4-pyridylurea analogue 25 showed the best PI3K α potency with an IC₅₀ of 8 nM, which is 8-fold more potent than the lead compound 1f. In the meantime, mTOR potency was also dramatically increased (IC₅₀ = 2 nM for 25 versus 634 nM for 1f). More importantly, this compound exhibited a significant improvement in cellular potency against PC3, which is 12-fold more potent than 1f in the cell assay. For PI3K α enzyme potency, the 3-pyridylurea analogue 24 was 2-fold less potent than the 4-pyridylurea analogue 25, while the 2-pyridylurea analogue 23 was 18-fold less potent than 25. The same trend was observed in their PC3 cell potency, with the order 4-pyridyl > 3-pyridyl > 2-pyridyl. The F-substitued phenylurea analogue 26 was 3-fold more potent against PI3Kα than 1f; however, it was 3-fold less potent than the 4-pyridylurea analogue 25. In comparison with the arylurea analogues, the alkylurea analogues 27 and 28 were much less potent against PI3K α . As for their properties, these urea analogues showed better water solubility, yet no improvements were observed in microsome stability in rat when compared to 1f.

Since the 4-pyridylurea analogue 25 showed the best in vitro profile in the series, we explored the effects of different substitutions at the N7 position for further optimization. The effects of the substitutions at N7 on PI3Ka activity and cellular activity are shown in Table 4. Compound 29, with no substitution at N7, was less potent against PI3K α than 25 (bearing a dimethylaminoethyl group). Introducing cyclic amino substituted ethyl goups at N7 resulted in a decrease in PI3K α potency (35, 36, and 38), as well as cellular potency when compared to 25. The same result was observed for analogue 37, bearing an ethylenediaminoethyl group at the N7 position. Compound 39, bearing a 2-piperazinylethyl group at N7, exhibited PI3Ka potency comparable to that of 25 but showed 23-fold less in cell potency against PC3. Replacement of the dimethylamino group in 25 with a hydroxy retained PI3K α potency as well as PC3 cell potency for 40. The acetal analogue 33 was slightly less potent in PI3K α but more potent in cell for PC3 compared to 25. In contrast to 33, the aldehyde analogue 34 was more potent in enzyme for PI3K α ; however, it was 6-fold less potent in cell for PC3 compared to 25. Compound 32, with a triflouroethyl group at N7, showed a comparable potency against PI3K α and a better PC3 potency relative to 25. In terms of pharmaceutical

		IC ₅₀ (nM)			Solubility	Stability
					(µg/mL)	T _{1/2} (min) ^b
Compound	R =	ΡΙ3Κα	mTOR	PC3	pH: 7.4	Rat
25	بري بري ا	8	2	100	52	2
29	Н	28	1	187	ND	ND
32	-CH ₂ CF ₃	10	1	82	1	>30
33	-CH ₂ CH(OCH ₃) ₂	17	1	72	2	4
34	-CH ₂ CHO	2	3	639	2	ND
35	2, N	30	7	555	28	4
36	2200 N	53	52	634	47	4
37	H N	36	11	1147	58	8
38	22 N	42	24	964	>100	4
39	NH NNH	7	14	2333	>100	4
40	-(CH ₂) ₂ OH	5	2	91	1	22

^{*a*} The values are averages of at least two separate determinations with a typical variation of less than $\pm 30\%$. ND: not determined. ^{*b*} Half-life of drug when incubating with rat liver microsomes.

properties, analogues **32** and **40** demonstrated improved microsomal stability; however, both compounds showed poor solubility at pH 7.4. Molecular modeling of analogue **40**, as shown in Figure 2, displays the crucial hydrogen bonding interactions, including the morpholino oxygen binding to the hinge region Val851 and the urea moiety binding to Asp810 and Lys802. It is observed that the pyridyl nitrogen is pointing away from the binding pocket toward the solvent front. Hence, a series of 4-ureidobenzamide derivatives with extended basic amino groups were prepared for further optimization.

The assay results of 4-ureidobenzamide derivatives are shown in Table 5. In general, the 4-ureidobenzamide analogues possessed excellent enzyme potency against PI3K α and mTOR, as well as high cell potency against PC3 and MDA361. Compound **46** was 11-fold more potent against PI3K α and 9-fold more potent in cell against PC3 compared to **32**. Analogues **47–49** bearing different amide groups also showed excellent PI3K α potency with IC₅₀ values ranging from 0.9 to 6 nM, as well as good cell potency against PC3 with IC₅₀ values ranging from 17 to 45 nM. Replacement of 2,2,2-trifluoroethyl group with ethyl at N7, resulted in compounds **50–52**, which also showed excellent PI3K α potency and good cell potency against PC3 and MDA361. Most

Figure 2. Modeling study of **40** (shown in turquoise for its skeleton) docked in PI3K α homology model based on PI3K γ crystal structures.³⁰

analogues in this series showed improved stability in rat and human liver microsomes, and compounds **46** and **48** showed good stability in nude mouse liver microsomes with $T_{1/2} > 30$ min. The solubility of these compounds were poor at physiological pH; however, it can be improved at pH 3.0 because of the presence of the basic amino groups in their molecules, as seen in examples for compounds **46–48**.

Analogues **46** and **48** were then assayed in vivo for their ability to suppress appropriate biomarkers. Inhibition of PI3K α should result in suppression of the phosphorylation of Akt, particularly at T308. As can be seen in Figure 3, analogues **46** and **48** suppressed phosphorylation of Akt T308 in MDA361 breast tumor cells for up to 8 h when administered 25 mpk, iv, in nude mouse. The actin (control protein) signal was unaffected by **46** and **48**. Both compounds also inhibited phosphorylation of Akt S473 and S6K, substrates of mTOR, indicating that they are PI3K/mTOR dual inhibitors. Pharmacokinetic analysis showed that the blood concentrations of compounds **46** and **48** at 8 h after a single 25 mpk iv dose (vehicle: 5% dextrose/lactic acid, pH 3.5) were 1731 and 1683 ng/mL, respectively.

In vivo efficacy study of compound **46** was conducted in nude mice bearing MDA361 human breast tumors (Figure 4). Compound **46** was dosed at 50, 25, and 10 mg/kg, iv, once daily for 5 days weekly (two rounds). Significant tumor regression was observed in higher dose of **46** for 50 mpk and no tumor regrowth until day 32. Tumor growth inhibition was also seen in the lower doses at 25 and 10 mpk.

Conclusion

A series of 4-morpholinopyrrolopyrimidine derivatives have been designed, synthesized, and evaluated as PI3K inhibitors. Compound **9** was found to be a selective and potent PI3K α inhibitor with an IC₅₀ of 21 nM and selectivity over mTOR. Replacement of the 3-hydroxymethyl group with a 4-arylurea not only improved enzyme potency against PI3K α and mTOR but also significantly increased cell potency against PC3 (prostate) and MDA361 (breast) cancer

	IC ₅₀ (nM)							
compd	ΡΙ3Κα	mTOR	MDA361	PC3	$T_{1/2}^{b}$ (Rat)	$T_{1/2}^{b}$ (Human)	sol., ^{<i>c</i>} pH 7.4	sol., ^{<i>c</i>} pH 3.0
32	10	1	53	82	> 30	ND	1	ND
46	0.9	0.6	< 3.0	13.0	29	> 30	0	>100
47	1.4	0.4	10.3	23.0	> 30	> 30	0	68
48	2.4	1.7	6.7	17.0	27	> 30	0	>100
49	6.0	1.7	11	45	> 30	ND	1	ND
50	1.8	0.5	5.5	26.5	> 30	> 30	1	ND
51	2.7	1.4	4.5	17.0	15	> 30	0	ND
52	0.8	0.9	4.5	27.0	> 30	> 30	1	ND

^{*a*} The values are averages of at least two separate determinations with a typical variation of less than $\pm 30\%$. ND: not determined. ^{*b*} Half-life of drug when incubating with liver microsomes of the species shown. ^{*c*} Solubility in $\mu g/mL$.

Figure 3. In vivo biomarker studies 8 h after compounds were administered at 25 mpk (iv) to MDA361 tumor bearing nude mice.

Figure 4. Antitumor efficacy of 46 in the MDA361 xenograft model.

cell lines. By use of molecular modeling, 4-ureidobenzamide derivatives were designed and introduced, most of which

exhibited excellent cell potency with single digit nanomolar IC_{50} value in the tumor cell (MDA361) growth inhibition assays. Among them, compounds **46** and **48** were found to have good blood levels at 8 h after iv administration. In vivo biomarker studies showed that both compounds **46** and **48** suppressed the formation of pAkt (T308), pAkt (S473), and pS6K up to 8 h when administered at 25 mpk, iv, in the MDA361 xenograft model. On the basis of the above results, compound **46** was selected for in vivo efficacy studies in which it demonstrated in vivo antitumor efficacy in the MDA361 xenograft model. Evaluating the antitumor efficacy of **46** in other tumor models is in progress.

Experimental Section

General. All solvents and reagents were used as received. ¹H NMR spectra were recorded with a Bruker DRX400 spectrometer; Chemical shifts are reported in parts per million (δ) using tetramethylsilane as the internal standard with coupling constants (J) reported in hertz (Hz). The peak shapes are denoted as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. Mass spectra (MS) and high-resolution mass spectra (HRMS) were measured with an Agilent TOF 2 spectrometer. The purity of final compounds was determined by analytical HPLC using a Prodigy ODS3 column (150 mm \times 4.6 mm). Conditions were as follows: ACN/H₂O eluent at 1 mL/min flow (containing 0.05% TFA) at 40 °C, 20 min, gradient 5% ACN to 95% ACN, monitored by UV absorption at 215 nm. All final compounds were found to have $\geq 95\%$ purity unless otherwise specified. Reversed-phase HPLC (preparative HPLC) purifications were performed on a Gilson preparative HPLC system controlled by Unipoint software using a Phenomenex Gemini column (100 mm \times 30 mm). Thin-layer chromatography (TLC) was performed on TLC silica gel 60F254 aluminum sheets. The terms "concentrated" and "evaporated" refer to removal of solvents using a rotary evaporator at water aspirator pressure with a bath temperature equal to or less than 40 °C.

4-(2-Chloro-6-methyl-5-nitropyrimidin-4-yl)morpholine (3). To a stirred solution of 2,4-dichloro-6-methyl-5-nitropyrimidine (5.0 g, 24.15 mmol) in CH₂Cl₂ (50 mL) was added a solution of morpholine (2.1 mL, 24.15 mmol) in CH₂Cl₂ (20 mL), followed by the addition of triethylamine (6.7 mL, 48.3 mmol) at 0 °C. The resulting mixture was stirred at room temperature overnight and diluted with CH₂Cl₂. The organic solution was washed with water and brine and dried over MgSO₄. The solvent was evaporated, and the residue was purified by flash chromatography to give the title compound as a yellow solid (6.17 g, 99% yield). ¹H NMR (CDCl₃, 400 MHz) δ 2.46 (s, 3H), 3.57 (t, 4H, *J* = 4.58 Hz), 3.76 (t, 4H, *J* = 4.8 Hz). MS (ESI): *m*/*z* 259 [M + H].

3-(4-Morpholin-4-yl-5*H***-pyrrolo[3,2-***d***]pyrimidin-2-yl)phenol (6). Step 1. To a stirred solution of 4-(2-chloro-6-methyl-5nitropyrimidin-4-yl)morpholine (3) (400 mg, 1.55 mmol) in 8 mL of 1,2-dimethoxymethane (DME) were added 3-benzyloxyphenylboronic acid (533 mg, 2.34 mmol), Pd(Ph₃)₄ (90 mg, 5 mol %), and 2 N Na₂CO₃ aqueous solution (6 mL). The resulting mixture was heated at 110 °C for 30 min in a microwave oven. The reaction mixture was cooled to room temperature, and the resultant solid was filtered off and washed with THF. The resulting filtrate was diluted with EtOAc, washed with brine, and dried over MgSO₄. The solvent was evaporated, and the residue was purified by flash chromatography to give 4-{2-[3-(benzyloxy)phenyl]-6-methyl-5-nitropyrimidin-4-yl}morpholine as a yellow solid (600 mg, 95% yield). MS (ESI): m/z 407 [M + H].**

Step 2. A mixture of 4-{2-[3-(benzyloxy)phenyl]-6-methyl-5nitropyrimidin-4-yl}morpholine (600 mg, 1.48 mmol) and 20 mL of *N*,*N*-dimethylformamide dimethyl acetal (DMF–DMA) was heated at 110 °C overnight. The reaction mixture was cooled to room temperature and concentrated in vacuo. The residue was diluted with EtOAc and filtered through a short silica gel column. The filtrate was concentrated, and the residue was triturated with diethyl ether. The resulting red solid was collected by filtration to give (*E*)-2-{2-[3-(benzyloxy)phenyl]-6-morpholin-4-yl-5-nitropyrimidin-4-yl]-*N*,*N*-dimethylethenamine (641 mg, 94% yield). MS (ESI): m/z 462 [M + H].

Step 3. To a solution of (*E*)-2-{2-[3-(benzyloxy)phenyl]-6morpholin-4-yl-5-nitropyrimidin-4-yl}-*N*,*N*-dimethylethenamine (350 mg, 0.76 mmol) in 50 mL of methanol was added 40 mg of 10% Pd/C as catalyst. The resulting mixture was shaken under hydrogen (H₂, 50 psi) at room temperature for 2 h. The reaction mixture was filtered through a pad of Celite. The filtration was concentrated in vacuo, and the residue was purified by flash chromatography (EtOAc/hexanes = 80:20) to give 2-[3-(benzyloxy)phenyl]-4-morpholin-4-yl-5*H*-pyrrolo[3,2*d*]pyrimidine as an off-white solid (249 mg, 85% yield). MS (ESI): *m/z* 387.2 [M + H].

Step 4. To a solution of 2-[3-(benzyloxy)phenyl]-4-morpholin-4-yl-5*H*-pyrrolo[3,2-*d*]pyrimidine (249 mg, 0.64 mmol) in 20 mL of methanol were added 10% Pd/C (40 mg) and acetic acid (1 mL). The resulting mixture was shaken under hydrogen (H₂, 50 psi) at room temperature overnight. The reaction mixture was filtered through a pad of Celite, and the filtrate was concentrated. The residue was purified by flash column chromatography (EtOAc/hexanes = 80:20) to give **6** as an offwhite solid (180 mg, 95% yield). ¹H NMR (DMSO-*d*₆, 400 MHz) δ 3.82–3.77 (m, 8H), 6.52 (d, 1H, *J* = 3.0 Hz), 6.77 (dd, 1H, *J* = 8.1, 2.8 Hz), 7.21 (t, 1H, *J* = 7.8 Hz), 7.58 (t, 1H, *J* = 3.3 Hz), 7.84–7.80 (m, 2H), 9.36 (s, 1H), 11.44 (s, 1H). MS (ESI): *m*/*z* 297 [M + H]. HRMS calcd for C₁₆H₁₆N₄O₂ [M + H] 297.1346, obsd 297.1348. HPLC purity 98.9%.

[3-(4-Morpholin-4-yl-5*H*-pyrrolo[3,2-*d*]pyrimidin-2-yl)phenyl]methanol (4). Compound 4 was prepared from 3 to give an offwhite solid (41% yield), according to the procedure described for 6 (steps 1–3), using 3-(hydroxymethyl)phenylboronic acid. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 3.80 (s, 8H), 4.57 (d, 2H, *J* = 5.5 Hz), 5.23 (d, 1H, *J* = 5.8 Hz), 6.54 (dd, 1H, *J* = 3.3, 1.5 Hz), 7.33 (d, 1H, *J* = 7.6 Hz), 7.38 (t, 1H, *J* = 7.6 Hz), 7.59 (t, 1H, *J* = 3.3 Hz), 8.25 (d, 1H, *J* = 7.6 Hz), 8.36 (s, 1H), 11.45 (s, 1H). MS (ESI): *m/z* 311 [M + H]. HRMS calcd for C₁₇H₁₈N₄O₂ [M + H] 311.1502, obsd 311.1499. HPLC purity 97.6%. **2-(3-Methylphenyl)-4-morpholin-4-yl-5***H***-pyrrolo[3,2-***d***]pyrimidine (5). Compound 5 was isolated as an off-white solid (1.4% yield), as a byproduct in the preparation of 4. ¹H NMR (DMSO-d_6, 400 MHz) \delta 2.39 (s, 3H), 3.80 (s, 8H), 6.53 (dd, 1H, J=3.3, 1.8 Hz), 7.20 (d, 1H, J=7.8 Hz), 7.32 (t, 1H, J=7.8 Hz), 7.59 (t, 1H, J=2.8 Hz), 8.17 (d, 1H, J=7.8 Hz), 8.20 (s, 1H), 11.46 (s, 1H). MS (ESI): m/z 295 [M + H]. HRMS calcd for C₁₇H₁₈N₄O [M + H] 295.1553, obsd 295.1552. HPLC purity 95%.**

3-(4-Morpholin-4-yl-5*H***-pyrrolo[3,2-***d***]pyrimidin-2-yl)aniline (7). Compound 7 was prepared from 3 to give a yellow solid (53% yield), according to the procedure described for 6** using 3-nitrophenylboronic acid. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 3.85 (t, 4H, *J* = 4.8 Hz), 4.12 (t, 4H, *J* = 4.8 Hz), 6.63 (d, 1H, *J* = 2.5 Hz), 6.91 (d, 1H, *J* = 7.8 Hz), 7.31 (t, 1H, *J* = 7.8 Hz), 7.42 (d, 1H, *J* = 7.8 Hz), 7.49 (s, 1H), 7.89 (t, 1H, *J* = 2.5 Hz), 12.50 (s, 1H). MS (ESI): *m*/*z* 296 [M + H]. HRMS calcd for C₁₆H₁₇N₅O [M + H] 296.1506, obsd 296.1506. HPLC purity 95%.

{3-[4-Morpholin-4-yl-7-(pyrrolidin-1-ylmethyl)-5H-pyrrolo-[3,2-d]pyrimidin-2-yl]phenyl}methanol (9). To a stirred solution of [3-(4-morpholin-4-yl-5H-pyrrolo[3,2-d]pyrimidin-2-yl)phenyl]methanol (4) (19 mg, 0.06 mmol) in acetic acid (80% in water, 1 mL) was added formaldehyde (37% in water, 19 mg, 0.24 mmol), followed by addition of pyrrolidine (13 mg, 0.18 mmol). The resulting mixture was heated at 60 °C for 6 h and cooled to room temperature. The reaction mixture was concentrated, and the residue was subjected to HPLC separation to give the title compound 9 as an off-white solid (12 mg, 52%) yield). ¹H NMR (DMSO-*d*₆, 400 MHz) δ 1.67 (m, 4H), 2.54 (m, 4H), 3.80 (m, 8H), 3.82 (s, 2H), 4.58 (br, 2H), 5.23 (br, 1H), 7.33 (d, 1H, J=7.6 Hz), 7.39 (t, 1H, J=7.6 Hz), 7.47 (s, 1H), 8.28 (d, 1H, J = 7.6 Hz), 8.36 (s, 1H), 11.33 (s, 1H). MS (ESI): m/z 394 [M + H]. HRMS calcd for $C_{22}H_{27}N_5O_2[M + H]$ 394.2238, obsd 394.2237. HPLC purity 95%.

3-{7-[(Dimethylamino)methyl]-4-morpholin-4-yl-5*H*-pyrrolo-[3,2-*d*]pyrimidin-2-yl}phenyl)methanol (8). Compound 8 was prepared from 4 to give an off-white solid (64% yield), according to the procedure described for 9, using dimethylamine. ¹H NMR (DMSO- d_6 , 400 MHz) δ 2.19 (s, 6H), 3.66 (s, 2H), 3.81 (m, 8H), 4.58 (br, 2H), 5.23 (br, 1H), 7.33 (d, 1H, J=7.6 Hz), 7.39 (t, 1H, J=7.6 Hz), 7.47 (s, 1H), 8.29 (d, 1H, J=7.6 Hz), 8.37 (s, 1H), 11.37 (s, 1H). MS (ESI): m/z 368 [M + H]. HRMS calcd for C₂₀H₂₅N₅O₂ [M + H] 368.2081, obsd 368.2078. HPLC purity 95%.

[3-(5-Methyl-4-morpholin-4-yl-5*H*-pyrrolo[3,2-*d*]pyrimidin-2yl)phenyl]methanol (10). Step 1. To a solution of [3-(4-morpholin-4-yl-5*H*-pyrrolo[3,2-*d*]pyrimidin-2-yl)phenyl]methanol (4) (1.469 g, 4.74 mmol) in DMF (5 mL) were added imidazole (0.483 g, 7.10 mmol) and *tert*-butyldimethylsilyl chloride (0.857 g, 5.69 mmol). The resulting mixture was heated at 80 °C for 15 min in microwave oven and cooled to room temperature. The mixture was poured onto 20 mL of water and extracted with EtOAc. The combined organic phases were washed with water and brine and dried over MgSO₄. The solvent was evaporated, and the residue was purified by flash chromatography (EtOAc/hexanes = 1:1) to give 2-[3-({[*tert*-butyl-(dimethyl)sily]]oxy}methyl)phenyl]-4-morpholin-4-yl-5*H*-pyrrolo[3,2-*d*]pyrimidine as a white solid (1.949 g, 97% yield). MS (ESI): *m*/z 425 [M + H].

Step 2. To a solution of 2-[3-({[*tert*-butyl(dimethyl)silyl]oxy}methyl)phenyl]-4-morpholin-4-yl-5*H*-pyrrolo[3,2-*d*]pyrimidine (424 mg, 1.0 mmol) in THF (5 mL) was added NaH (60% in mineral oil, 80 mg, 2.0 mmol) at room temperature. After the mixture was stirred for 10 min, iodomethane (170 mg, 1.2 mmol) was added to the reaction mixture, and the resulting mixture was stirred at room temperature for 2 h. The reaction was quenched by addition of 2 mL of saturated aqueous ammonium chloride solution, followed by addition of 10 mL of water. The mixture was extracted with EtOAc, and combined organic phases were washed with water and brine and dried over MgSO₄. The solvent was evaporated, and the residue was dissolved in 10 mL of CH₂Cl₂. To this solution was added dropwise trifluoroacetic acid (TFA, 2 mL) at room temperature. The resulting mixture was stirred at room temperature for 3 h and concentrated. The residue was treated with 1 N NaOH aqueous solution (10 mL) and extracted with CH₂Cl₂. The combined organic extracts were washed with water and brine and dried over MgSO₄. The solvent was evaporated, and the residue was purified by flash chromatography to give **10** as an off-white solid (252 mg, 78% yield). ¹H NMR (DMSO-*d*₆, 400 MHz) δ 3.40 (t, 4H, *J* = 4.8 Hz), 3.85 (t, 4H, *J* = 4.8 Hz), 3.99 (s, 3H), 4.58 (d, 2H, *J* = 5.8 Hz), 5.26 (t, 1H, *J* = 5.5 Hz), 6.60 (d, 1H, *J* = 2.8 Hz), 7.35 (d, 1H, *J* = 7.6 Hz), 7.41 (t, 1H, *J* = 7.8 Hz), 7.67 (d, 1H, *J* = 3.0 Hz), 8.27 (d, 1H, *J* = 7.8 Hz), 8.38 (s, 1H). MS (ESI): *m*/*z* 325 [M + H]. HRMS calcd for C₁₈H₂₀N₄O₂ [M + H] 325.1659, obsd 325.1663. HPLC purity 98.4%.

{**3-[5-Methyl-4-morpholin-4-yl-7-(pyrrolidin-1-ylmethyl)-5***H***-pyrrolo**[**3**,**2**-*d*]**pyrimidin-2-yl]phenyl}methanol** (**11**). Compound **11** was prepared from **10** to give an off-white solid (26% yield), according to the procedure described for **9**, using pyrrolidine. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 1.68 (m, 4H), 2.54 (m, 4H), 3.40 (t, 4H, *J*=4.5 Hz), 3.80 (s, 2H), 3.85 (t, 4H, *J*=4.5 Hz), 3.92 (s, 3H), 4.59 (d, 2H, *J*=5.3 Hz), 5.23 (t, 1H, *J*=5.3 Hz), 7.35 (d, 1H, *J*=7.6 Hz), 7.4 (t, 1H, *J*=7.6 Hz), 7.55 (s, 1H), 8.3 (d, 1H, *J*=7.6 Hz), 8.4 (s, 1H). MS (ESI): *m/z* 408 [M + H]. HRMS calcd for C₂₃H₂₉N₅O₂ [M + H] 408.2394, obsd 408.2390. HPLC purity 97.0%.

3-(4-Morpholin-4-yl-7-piperidin-4-yl-5H-pyrrolo[**3,2-***d*]**pyrimidin-2-yl)phenol** (**12**). **Step 1.** To a solution of 2-[3-(benzyl-oxy)phenyl]-4-morpholin-4-yl-5*H*-pyrrolo[**3,2-***d*]pyrimidine (see preparation of **6**) (500 mg, 1.29 mmol) in methanol (5 mL) was added KOH (362 mg, 6.45 mmol, 5 equiv) and 4-piperidine monohydrate hydrochloride (495 mg, 3.23 mmol, 2.5 equiv). The resulting solution was heated at 66 °C overnight. The mixture was cooled to room temperature and concentrated. The residue was subjected to HPLC separation to give 2-[3-(benzyloxy)-phenyl]-4-morpholin-4-yl-7-(1,2,3,6-tetrahydropyridin-4-yl)-5*H*-pyrrolo[**3**,2-*d*]pyrimidine as a yellow solid (300 mg, 50% yield). MS (ESI): m/z 468 [M + H].

Step 2. To a solution of 2-[3-(benzyloxy)phenyl]-4-morpholin-4-yl-7-(1,2,3,6-tetrahydropyridin-4-yl)-5H-pyrrolo[3,2-d]pyrimidine (250 mg, 0.53 mmol) in methanol (20 mL) was added 10% Pd/C (50 mg) and concentrated HCl (30%, 0.2 mL). The resulting mixture was shaken under hydrogen (H₂, 50 psi) at room temperature overnight. The reaction mixture was filtered through a pad of Celite. The filtration was concentrated, and the residue was purified by HPLC to give 12 as an off-white solid (200 mg, 99% yield). ¹H NMR (DMSO-*d*₆, 400 MHz) δ 1.79 (qd, 2H, J=13.6, 3.5 Hz), 2.14 (d, 2H, J=13.3 Hz), 3.01 (q, 2H, J= 12.1 Hz), 3.33 (t, 1H, J = 11.8 Hz), 3.45 (d, 2H, J = 12.1 Hz), 3.84 (t, 4H, J=4.8 Hz), 4.13 (t, 4H, J=4.8 Hz), 7.11 (dd, 1H, J=8.1)2.0 Hz), 7.45 (t, 1H, J=7.8 Hz), 7.51 (t, 1H, J=2.0 Hz), 7.54 (d, 1H, J=7.8 Hz), 7.78 (d, 1H, J=3.0 Hz), 8.48 (d, 1H, J=10.3 Hz), 8.64 (d, 1H, J=10.6 Hz), 12.46 (d, 1H, J=3.0 Hz). MS (ESI): m/z 380 [M + H]. HRMS calcd for $C_{21}H_{25}N_5O_2 [M + H] 380.2081$, obsd 380.2088. HPLC purity 95%.

3-{7-[1-(4-Fluorobenzyl)piperidin-4-yl]-4-morpholin-4-yl-5*H*pyrrolo[3,2-*d*]pyrimidin-2-yl}phenol (14). To a solution of 3-(4morpholin-4-yl-7-piperidin-4-yl-5*H*-pyrrolo[3,2-*d*]pyrimidin-2yl)phenol (12) (22 mg, 0.058 mmol) in methanol (1 mL) was added 4-fluorobenzaldehyde (22 mg, 0.177 mmol), followed by addition of ZnCl₂ (24 mg, 0.174 mmol) and NaCNBH₃ (11 mg, 0.174 mmol). The resulting mixture was stirred at room temperature overnight. The solvent was evaporated, and the residue was subjected to HPLC separation to give 14 as an off-white solid (TFA salt, 17.2 mg, 49% yield). ¹H NMR (DMSO-*d*₆, 400 MHz) δ 1.93 (q, 2H, *J* = 12.6 Hz), 2.27 (d, 2H, *J* = 12.6 Hz), 3.07 (br, 2H), 3.22 (t, 1H, *J* = 11.6 Hz), 3.52 (d, 2H, *J* = 11.6 Hz), 3.81 (t, 4H, *J* = 4.5 Hz), 3.95 (br, 4H), 4.40 (s, 2H), 6.95 (s, 1H), 7.31 (t, 1H, *J* = 7.4 Hz), 7.35 (t, 2H, *J* = 8.6 Hz), 7.54 (br, 1H), 7.63 (dd, 2H, *J* = 8.6, 5.4 Hz), 7.68 (br, 2H), 9.98 (br, 1H). MS (ESI): *m/z* 488 [M + H]. HRMS calcd for $C_{28}H_{30}FN_5O_2$ [M + H] 488.2456, obsd 488.2455. HPLC purity 96.1%.

3-[7-(1-benzylpiperidin-4-yl)-4-morpholin-4-yl-5*H*-pyrrolo[3,2-d]pyrimidin-2-yl]phenol (13). Compound 13 was prepared from 12 to give an off-white solid (TFA salt, 57% yield), according to the procedure described for 14, using benzaldehyde. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 1.93 (q, 2H, *J* = 12.5 Hz), 2.27 (d, 2H, *J*=12.5 Hz), 3.09 (br, 2H), 3.12 (t, 1H, *J*=11.7 Hz), 3.52 (d, 2H, *J*= 11.7 Hz), 3.81 (t, 4H, *J* = 4.5 Hz), 3.95 (br, 4H), 4.40 (s, 2H), 6.95 (br, 1H), 7.33 (t, 1H, *J*=7.4 Hz), 7.60–7.47 (m, 6H), 7.65 (br, 2H), 9.97 (br, 1H). MS (ESI): *m/z* 470 [M + H]. HRMS calcd for C₂₈H₃₁N₅O₂ [M + H] 470.2551, obsd 470.2548. HPLC purity 97.7%.

[3-(4-Morpholin-4-yl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl)phenyl]methanol (17). Step 1. 7*H*-Pyrrolo[2,3-*d*]pyrimidine-2,4-diol (15). To a suspended solution of 6-aminouracil (12.7 g, 100 mmol) and sodium acetate (8.2 g, 100 mmol) in H₂O (100 mL) at a temperature of 70–75 °C was added a solution of chloroacetaldehyde (50% in water, 23.6 g, 150 mmol). The resulting reaction mixture was stirred at 80 °C for 20 min and then cooled to room temperature. The resulting solid was collected by filtration, washed with water and acetone, and dried in vacuo to give 15 as brown solid (14.74 g, 98% yield). ¹H NMR (DMSO-*d*₆, 400 MHz) δ 6.22 (s, 1H), 6.56 (s, 1H), 10.46 (s, 1H), 11.08 (br, 1H), 11.43 (br, 1H). MS (ESI, negative): *m*/*z* 150 [M – H].

Step 2. 2,4-Dichloro-7*H*-pyrrolo[2,3-*d*]pyrimidine (15a). To a 20 mL vial were added 7*H*-pyrrolo[2,3-*d*]pyrimidine-2,4-diol (15) (2.5 g, 16.6 mmol), POCl₃ (10 mL, 107 mmol), and *N*,*N*-dimethylaniline (1 mL, 7.9 mmol). The resulting mixture was heated at 120 °C for 30 min in a microwave oven. The reaction mixture was cooled to room temperature and poured onto ice (about 200 g). The resulting solid was filtered and washed with water to give dichloro 15a as a brown solid (1.323 g, 43% yield). ¹H NMR (DMSO-*d*₆, 400 MHz) δ 6.67 (m, 1H), 7.74 (m, 1H), 12.78 (br, 1H). MS (ESI): *m*/*z* 188 [M + H].

Step 3. 2-Chloro-4-morpholin-4-yl-7*H*-pyrrolo[2,3-*d*]pyrimidine (16). To a solution of 2,4-dichloro-7*H*-pyrrolo[2,3-*d*]-pyrimidine (1.38 g, 7.4 mmol) in CH₂Cl₂ (30 mL) were added morpholine (0.96 mL, 11 mmol) and Et₃N (2.1 mL, 15 mmol). The mixture was stirred at room temperature overnight. The resulting solid was filtered and washed with EtOH and water to give 16 as a yellow solid (1.19 g, 68%). ¹H NMR (DMSO-*d*₆, 400 MHz) δ 3.72 (t, 4H, *J*=5.0 Hz), 3.84 (t, 4H, *J*=5.0 Hz), 6.67 (dd, 1H, *J*=3.3, 1.3 Hz), 7.21(dd, 1H, *J*=3.8, 2.3 Hz), 11.91 (br, 1H). MS (ESI): *m/z* 239 [M + H].

Step 4. [3-(4-Morpholin-4-yl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2yl)phenyl]methanol (17). To a 10 mL vial were added 2-chloro-4-morpholin-4-yl-7*H*-pyrrolo[2,3-*d*]pyrimidine (16) (150 mg, 0.63 mmol), 3-hydroxymethylphenylboronic acid (144 mg, 0.94 mmol), Pd(PPh₃)₄ (36 mg, 5 mol %), 1,2-dimethoxyethane (DME, 2.5 mL), and 2 M Na₂CO₃ aqueous solution (1.5 mL). The resulting mixture was heated at 120 °C for 1 h in a microwave oven. The reaction mixture was cooled to room temperature and diluted with EtOAc. The aqueous phase was extracted with EtOAc, and the combined organic phases were washed with brine and dried over MgSO4. The solvent was evaporated, and the residue was subjected to HPLC separation to give 17 as an offwhite solid (98 mg, 50% yield). ¹H NMR (DMSO- d_6 , 400 MHz) δ 3.78 (t, 4H, J=4.8 Hz), 3.95 (t, 4H, J=4.8 Hz), 4.58 (d, 2H, J=5.8 Hz), 5.24 (t, 1H, J=5.8 Hz), 6.66 (d, 1H, J=3.5 Hz), 7.24 (dd, 1H, J = 3.5, 2.8 Hz), 7.35 (d, 1H, J = 7.3 Hz), 7.40 (t, 1H, J = 7.8 Hz), 8.24 (d, 1H, J=7.8 Hz), 8.35 (s, 1H), 11.80 (s, 1H). MS (ESI): m/z 311 [M + H]. HRMS calcd for $C_{17}H_{18}N_4O_2 [M + H]$ 311.1502, obsd 311.1501. HPLC purity 95%.

3-(4-Morpholin-4-yl-7*H***-pyrrolo[2,3-***d***]pyrimidin-2-yl)phenol (18). Following the same procedure as for the preparation of 17, Suzuki coupling of 2-chloro-4-morpholin-4-yl-7***H***-pyrrolo[2,3-***d***]pyrimidine (16) (150 mg, 0.63 mmol) with 3-hydroxyphenylboronic acid (130 mg, 0.94 mmol) gave 18 as a yellow solid**

(130 mg, 70% yield). ¹H NMR (DMSO- d_6 , 400 MHz) δ 3.78 (t, 4H, J = 5.0 Hz), 3.93 (t, 4H, J = 5.0 Hz), 6.65 (d, 1H, J = 3.3 Hz), 6.80 (dd, 1H, J = 8.3, 2.5 Hz), 7.23 (dd, 2H, J = 7.8, 4.5 Hz), 7.80 (m, 2H), 9.40 (s, 1H), 11.77 (s, 1H). MS (ESI): m/z 297 [M + H]. HRMS calcd for C₁₆H₁₆N₄O₂ [M + H] 297.1346, obsd 297.1347. HPLC purity 95.3%.

2-Chloro-4-morpholin-4-yl-7-[2-(dimethylamino)ethyl]-7H-pyrrolo[2,3-d]pyrimidine (19). To a solution of 2-chloro-4-morpholin-4-yl-7H-pyrrolo[2,3-d]pyrimidine (**16**) (154 mg, 0.65 mmol) in DMF (5 mL) were added 2-(dimethylamino)ethyl chloride hydrochloride (140 mg, 0.97 mmol) and Cs₂CO₃ (635 mg, 1.95 mmol). The resulting mixture was heated at 80 °C under nitrogen overnight and cooled to room temperature. Water was added, and the mixture was extracted with EtOAc. The combined extracts were washed with water and brine and dried over MgSO₄. The solvent was evaporated to give **19** as a yellow syrup (169 mg, 84% yield), which was used in next step without further purification. ¹H NMR (CDCl₃, 300 MHz) δ 2.27 (s, 6H), 2.68 (t, 2H, *J*=6.4 Hz), 3.82 (t, 4H, *J*=4.9 Hz), 3.94 (t, 4H, *J*=5.3 Hz), 4.25 (t, 2H, *J*=6.4 Hz), 6.43 (d, 1H, *J*=3.8 Hz), 7.03 (d, 1H, *J*= 3.8 Hz). MS (ESI): *m/z* 310 [M + H].

(3-{7-[2-(Dimethylamino)ethyl]-4-morpholin-4-yl-7*H*-pyrrolo-[2,3-*d*]pyrimidin-2-yl}phenyl)methanol (20). Following the same procedure as for the preparation of 17, Suzuki coupling of 2-chloro-4-morpholin-4-yl-7-[2-(dimethylamino)ethyl]-7*H*-pyrrolo[2,3-*d*]pyrimidine (19) (80 mg, 0.26 mmol) and 3-hydroxymethylphenylboronic acid (58 mg, 0.38 mmol) gave 20 as an offwhite solid (96 mg, 88% yield). ¹H NMR (CD₃OD, 300 MHz) δ 3.01 (s, 6H), 3.79–3.71 (m, 2H), 3.94 (t, 4H, *J* = 4.9 Hz), 4.11 (t, 4H, *J* = 5.3 Hz), 4.76 (s, 2H), 4.87 (m, 2H), 7.09 (d, 1H, *J* = 3.8 Hz), 7.66–7.56 (m, 3H), 8.07 (d, 1H, *J* = 7.5 Hz), 8.17 (s, 1H). MS (ESI): *m*/*z* 382 [M + H]. HRMS calcd for C₂₁H₂₇N₅O₂ [M + H] 382.22386, obsd 382.2235. HPLC purity 97.5%.

3-{7-[**2-**(**Dimethylamino**)ethyl]-**4-morpholin-4-yl-**7*H***-pyrrolo-**[**2,3-***d*]**pyrimidin-2-yl**}**phenol** (**21**). Following the same procedure as for the preparation of **17**, Suzuki coupling of 2-chloro-4-morpholin-4-yl-7-[2-(dimethylamino)ethyl]-7*H*-pyrrolo[2,3-*d*]-pyrimidine (**19**) (80 mg, 0.26 mmol) and 3-hydroxyphenylboronic acid (54 mg, 0.38 mmol) gave **21** as an off-white solid (81.9 mg, 78% yield). ¹H NMR (CD₃OD, 300 MHz) δ 3.01 (s, 6H), 3.74 (t, 2H, *J* = 6.0 Hz), 3.90 (t, 4H, *J* = 5.3 Hz), 4.06 (t, 4H, *J* = 5.3 Hz), 4.79 (t, 2H, *J* = 6.0 Hz), 6.96 (d, 1H, *J* = 3.8 Hz), 7.0 (dd, 1H, *J* = 7.9, 2.3 Hz), 7.37 (t, 1H, *J* = 7.9 Hz), 7.50 (d, 1H, *J* = 3.8 Hz), 7.68–7.62 (m, 2H). MS (ESI): *m/z* 368 [M + H]. HRMS calcd for C₂₀H₂₅N₅O₂ [M + H] 368.2081, obsd 368.2082. HPLC purity 98.8%.

4-{**7**-[**2**-(**Dimethylamino**)**ethyl**]-**4**-**morpholin-4**-**y**l-**7***H*-**pyrrolo**-[**2**,3-*d*]**pyrimidin-2**-**y**l}**aniline** (**22**). Following the same procedure as for the preparation of **17**, Suzuki coupling of 2-chloro-4morpholin-4-yl-7-[2-(dimethylamino)ethyl]-7*H*-pyrrolo[2,3-*d*]pyrimidine (**19**) (261 mg, 0.84 mmol) and 4-aminophenylboronic acid pinacol ester (277 mg, 1.27 mmol) gave **22** as a yellow oil (278 mg, 90% yield). ¹H NMR (CDCl₃, 300 MHz) δ 2.32 (s, 6H), 2.76 (t, 2H, *J*=6.4 Hz), 3.86 (t, 4H, *J*=5.3 Hz), 4.0 (t, 4H, *J*=5.3 Hz), 4.37 (t, 2H, *J*=6.4 Hz), 6.42 (d, 1H, *J*=3.8 Hz), 6.72 (d, 2H, *J*=8.7 Hz), 6.98 (d, 1H, *J*=3.8 Hz), 8.30 (d, 2H, *J*=8.7 Hz). MS (ESI): *m*/ *z* 367 [M + H].

1-(4-{7-[2-(Dimethylamino)ethyl]-4-morpholin-4-yl-7*H***-pyrrolo[2,3-***d***]pyrimidin-2-yl}phenyl)-3-pyridin-2-ylurea (23). To a solution of 4-{7-[2-(dimethylamino)ethyl]-4-morpholin-4-yl-7***H***-pyrrolo[2,3-***d***]pyrimidin-2-yl}aniline (22) (22 mg, 0.06 mmol) in CHCl₃ (1 mL) were added Et₃N (25 \muL, 0.18 mmol) and triphosgene (18 mg, 0.06 mmol). The mixture was stirred at room temperature for 15 min, and 2-aminopyridine (17 mg, 0.18 mmol) was added. The mixture was stirred at room temperature overnight. The solvent was evaporated, and the residue was subjected to HPLC separation to give 23 as an off-white solid (15 mg, 51% yield). MS (ESI): m/z 487 [M + H]. HRMS calcd for C₂₆H₃₀N₈O₂ [M + H] 487.2564, obsd 487.2561. HPLC purity 99.0%.** 1-(4-{7-[2-(Dimethylamino)ethyl]-4-morpholin-4-yl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl}phenyl)-3-pyridin-3-ylurea (24). Compound 24 was prepared from 22 to give an off-white solid (45% yield), according to the procedure described for 23, using 3-aminopyridine. MS (ESI): m/z 487 [M + H]. HRMS calcd for C₂₆H₃₀N₈O₂ [M + H] 487.2564, obsd 487.2564. HPLC purity 96.0%.

1-(4-{7-[2-(Dimethylamino)ethyl]-4-morpholin-4-yl-7*H***-pyrrolo[2,3-***d***]pyrimidin-2-yl}phenyl)-3-pyridin-4-ylurea (25). Compound 25 was prepared from 22 to give an off-white solid (62% yield), according to the procedure described for 23, using 4-aminopyridine. ¹H NMR (CD₃OD, 400 MHz) \delta 2.34 (s, 6H), 2.83 (t, 2H,** *J* **= 6.8 Hz), 3.85 (t, 4H,** *J* **= 5.0 Hz), 4.00 (t, 4H,** *J* **= 5.3 Hz), 4.42 (t, 2H,** *J* **= 7.1 Hz), 6.60 (d, 1H,** *J* **= 3.5 Hz), 7.16 (d, 1H,** *J* **= 3.5 Hz), 7.52 (t, 2H,** *J* **= 1.8 Hz), 7.54 (d, 2H,** *J* **= 1.8 Hz), 8.32 (dd, 2H,** *J* **= 4.8, 1.5 Hz), 8.39 (d, 2H,** *J* **= 8.3 Hz). MS (ESI):** *m***/***z* **487 [M + H]. HRMS calcd for C₂₆H₃0N₈O₂[M + H] 487.2564, obsd 487.2564. HPLC purity 95%.**

1-(4-{7-[2-(Dimethylamino)ethyl]-4-morpholin-4-yl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl}phenyl)-3-(4-fluorophenyl)urea (26). Compound 26 was prepared from 22 to give an off-white solid (33% yield), according to the procedure described for 23, using 4-fluoroaniline. MS (ESI): m/z 504 [M + H]. HRMS calcd for C₂₇H₃₀FN₇O₂ [M + H] 504.2518, obsd 504.2515. HPLC purity 95%.

1-(4-{7-[2-(Dimethylamino)ethyl]-4-morpholin-4-yl-7*H***-pyrrolo[2,3-***d***]pyrimidin-2-yl}phenyl)-3-ethylurea (27). Compound 27 was prepared from 22 to give a yellow solid (41% yield), according to the procedure described for 23, using ethylamine. ¹H NMR (DMSO-***d***₆, 400 MHz) \delta 1.06 (t, 3H,** *J***=7.1 Hz), 2.88 (s, 6H), 3.12 (q, 2H,** *J***=7.1 Hz), 3.61 (br, 2H), 3.77 (t, 4H,** *J***=4.5 Hz), 3.94 (t, 4H,** *J***=4.5 Hz), 4.62 (t, 2H,** *J***=6.1 Hz), 6.27 (br, 1H), 6.75 (d, 1H,** *J***=3.6 Hz), 7.33 (d, 1H,** *J***=3.6 Hz), 7.49 (d, 2H,** *J***=8.7 Hz), 8.28 (d, 2H,** *J***=8.7 Hz), 8.71 (s, 1H), 9.65 (br, 1H). MS (ESI):** *m/z* **438 [M + H]. HRMS calcd for C₂₃H₃₁N₇O₂ [M + H] 438.2612, obsd 438.2609. HPLC purity 97.2%.**

1-(4-{7-[2-(Dimethylamino)ethyl]-4-morpholin-4-yl-7*H***-pyrrolo[2,3-***d*]**pyrimidin-2-yl**}**phenyl)-3-methylurea** (**28**). Compound **28** was prepared from **22** to give a yellow solid (34% yield), according to the procedure described for **23**, using methylamine. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 2.66 (s, 3H), 2.88 (s, 6H), 3.61 (br, 2H), 3.77 (t, 4H, *J* = 4.5 Hz), 3.94 (t, 4H, *J* = 4.5 Hz), 4.61 (t, 2H, *J* = 6.1 Hz), 6.12 (br, 1H), 6.75 (d, 1H, *J* = 3.6 Hz), 7.33 (d, 1H, *J* = 3.6 Hz), 7.50 (d, 2H, *J* = 8.7 Hz), 8.28 (d, 2H, *J* = 8.7 Hz), 8.78 (s, 1H), 9.60 (br, 1H). MS (ESI): *m/z* 424 [M + H]. HRMS calcd for C₂₂H₂₉N₇O₂ [M + H] 424.2456, obsd 424.2453. HPLC purity 98.2%.

1-[4-(4-Morpholin-4-yl-7H-pyrrolo[2,3-d]pyrimidin-2-yl)phenyl]-3-pyridin-4-ylurea (29). To a 10 mL vial were charged 4-isocyantophenylboronic acid, pinacol ester (368 mg, 1.5 mmol), 4-aminopyridine (188 mg, 2.0 mmol), Et₃N (0.28 mL, 2.0 mmol), and DME (3 mL). The mixture was stirred at room temperature for 5 h, and to the mixture were then added 2-chloro-4-morpholin-4-yl-7*H*-pyrrolo[2,3-*d*]pyrimidine (16) (238 mg, 1.0 mmol), Na₂CO₃ aqueous solution (2 M, 2 mL), and Pd(PPh₃)₄ (58 mg, 5 mol %). The resulting mixture was heated at 120 °C for 30 min in microwave oven. The reaction mixture was cooled to room temperature and diluted with EtOAc. The aqueous phase was extracted with EtOAc, and the combined organic phases were washed with brine and dried over MgSO₄. The solvent was evaporated, and the residue was subjected to HPLC separation to give 29 as a yellow solid (66 mg, 16% yield). ¹H NMR (DMSO- d_6 , 400 MHz) δ 3.78 (t, 4H, J = 4.5 Hz, 3.95 (t, 4H, J = 5.0 Hz), 6.66 (m, 1H), 7.23 (m, 1H), 7.63 (d, 2H, J=8.6 Hz), 7.96 (d, 2H, J=7.3 Hz), 8.34 (d, 2H, J= 8.6 Hz), 8.62 (d, 2H, J = 7.6 Hz), 9.96 (s, 1H), 10.84 (s, 1H), 11.79 (s, 1H). MS(ESI): m/z 416 [M + H]. HRMS calcd for C₂₂H₂₁N₇O₂ [M + H] 416.1829, obsd 416.1830. HPLC purity 95%.

2-Chloro-4-morpholin-4-yl-7-(2,2,2-trifluoroethyl)-7*H*-pyrrolo[2,3-*d*]pyrimidine (30). To a solution of 2-chloro-4-morpholin-4-yl-7*H*-pyrrolo[2,3-*d*]pyrimidine (16) (340 mg, 1.4 mmol) in DMF (5 mL) were added 1,1,1-trifluoro-2-iodoethane (0.28 mL, 2.8 mmol) and Cs₂CO₃ (559 mg, 1.7 mmol). The resulting mixture was heated at 80 °C under nitrogen overnight and cooled to room temperature. The reaction mixture was quenched with water and extracted with EtOAc. The combined extracts were washed with water and brine and dried over MgSO₄. The solvent was evaporated to give **30** as a light-yellow solid (199 mg, 43% yield), which was used in the next step without further purification. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 3.72 (t, 4H, *J* = 5.0 Hz), 3.86 (t, 4H, *J* = 5.0 Hz), 5.05 (q, 2H, *J* = 9.3 Hz), 6.84 (d, 1H, *J* = 3.5 Hz), 7.34 (d, 1H, *J* = 3.8 Hz). MS (ESI): *m*/z 321 [M + H].

4-[7-(2,2,2-Trifluoroethyl)-4-morpholin-4-yl-7H-pyrrolo[2,3-d]pyrimidin-2-yl]aniline (42). To a 10 mL vial were added 2-chloro-4-morpholin-4-yl-7-(2,2,2-trifluoroethyl)-7H-pyrrolo[2,3-d]pyrimidine (30) (294 mg, 0.9 mmol), 4-aminophenylboronic acid pinacol ester (302 mg, 1.4 mmol), Pd(PPh₃)₄ (53 mg, 5 mol %), 1,2-dimethoxyethane (DME, 3 mL), and Na₂CO₃ aqueous solution (2 M, 2 mL). The resulting mixture was heated at 130 °C for 30 min in a microwave oven. The reaction mixture was cooled to room temperature and diluted with EtOAc. The aqueous phase was extracted with EtOAc, and the combined organic phases were washed with brine and dried over MgSO₄. The solvent was evaporated, and the residue was purified by flash chromatography to give 42 as a brown oil (286 mg, 83%) yield). ¹H NMR (DMSO- d_6 , 400 MHz) δ 3.77 (t, 4H, J=5.0 Hz), 3.91 (t, 4H, J=4.8 Hz), 5.12 (q, 2H, J=9.3 Hz), 5.44 (s, 2H), 6.61 (d, 2H, J = 9.3 Hz), 6.74 (d, 1H, J = 4.0 Hz), 7.25 (d, 1H, J = 4.0 Hz)Hz), 8.12 (d, 2H, J = 9.1 Hz). MS (ESI): m/z 378 [M + H].

1-{4-[4-Morpholin-4-yl-7-(2,2,2-trifluoroethyl)-7H-pyrrolo-[2,3-d]pyrimidin-2-yl]phenyl}-3-pyridin-4-ylurea (32). To a solution of 4-[7-(2,2,2-trifluoroethyl)-4-morpholin-4-yl-7H-pyrrolo-[2,3-d]pyrimidin-2-yl]aniline (42) (25 mg, 0.066 mmol) in CHCl₃ (1 mL) were added Et₃N (28 μ L, 0.2 mmol) and triphosgene (20 mg, 0.066 mmol). The mixture was stirred at room temperature for 15 min before a solution of 4-aminopyridine (19 mg, 0.2 mmol) in THF (1 mL) was added. The mixture was stirred at room temperature overnight. The solvent was evaporated, and the residue was subjected to HPLC separation to give 32 as an off-white solid (24.5 mg, 61% yield). ¹H NMR (DMSO- d_6 , 300 MHz) δ 3.78 (t, 4H, J=5.3 Hz), 3.97 (t, 4H, J=5.3 Hz), 5.18 (q, 2H, J=9.8 Hz), 6.82 (d, 1H, J=3.8 Hz), 7.35 (d, 1H, J=3.8 Hz), 7.63 (d, 2H, J = 8.7 Hz), 7.94 (d, 2H, J = 7.2 Hz), 8.41 (d, 2H, J =8.7 Hz), 8.61 (d, 2H, J=7.2 Hz), 9.85 (s, 1H), 10.64 (s, 1H). MS (ESI): m/z 498 [M + H]. HRMS calcd for C₂₄H₂₂F₃N₇O₂ [M + H] 498.1860, obsd 498.1860. HPLC purity 97.6%.

2-Chloro-7-(2,2-dimethoxyethyl)-4-morpholin-4-yl-7*H***-pyrrolo[2,3-***d***]pyrimidine (31). To a solution of 2-chloro-4-morpholin-4-yl-7***H***-pyrrolo[2,3-***d***]pyrimidine (16) (650 mg, 2.7 mmol) in DMF (10 mL) were added 2-bromo-1,1-dimethoxyethane (0.65 mL, 5.4 mmol) and Cs₂CO₃ (1.067 g, 3.3 mmol). The resulting mixture was heated at 80 °C under nitrogen overnight and cooled to room temperature. Water was added, and the mixture was extracted with EtOAc. The combined extracts were washed with water and brine and dried over MgSO₄. The solvent was evaporated to give 31** as a light-yellow solid (665 mg, 75% yield), which was used in the next step without further purification. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 3.27 (s, 6H), 3.72 (t, 4H, J=5.0 Hz), 3.84 (t, 4H, J=5.3 Hz), 4.20 (d, 2H, J=5.5 Hz), 4.67 (t, 1H, J=5.3 Hz), 6.7 (d, 1H, J=4.0 Hz), 7.26 (d, 1H, J=3.8 Hz). MS (ESI): m/z 327 [M + H].

1-{**4**-[**7**-(**2**,**2**-Dimethoxyethyl)-4-morpholin-4-yl-7*H*-pyrrolo-[**2**,**3**-*d*]pyrimidin-2-yl]phenyl}-3-pyridin-4-ylurea (**33**). Step 1. To a 20 mL vial were added 2-chloro-7-(2,2-dimethoxyethyl)-4-morpholin-4-yl-7*H*-pyrrolo[2,3-*d*]pyrimidine (**31**) (665 mg, 2 mmol), 4-aminophenylboronic acid pinacol ester (670 mg, 3 mmol), Pd-(PPh₃)₄ (118 mg, 5 mol %), 1,2-dimethoxyethane (DME, 6 mL), and sodium carbonate aqueous solution (2M, 4 mL). The resulting mixture was heated at 130 °C for 30 min in a microwave oven. The reaction mixture was cooled to room temperature and diluted with EtOAc. The aqueous phase was extracted with EtOAc, and the combined organic solution was concentrated. The residue was purified by flash chromatography to give 4-[7-(2,2-dimethoxy-ethyl)-4-morpholin-4-yl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]aniline as a brown oil (760 mg, 97% yield). MS (ESI): m/z 384 [M + H].

Step 2. To a solution of 4-[7-(2,2-dimethoxyethyl)-4-morpholin-4-yl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]aniline (766 mg, 2 mmol) in CHCl₃ (10 mL) were added Et₃N (0.55 mL, 3.9 mmol) and triphosgene (594 mg, 2 mmol). The mixture was stirred at room temperature for 15 min before a solution of 4-aminopyridine (564 mg, 6 mmol) in THF (10 mL) was added. The mixture was heated at 50 °C overnight. The solvent was evaporated, and the residue was subjected to HPLC separation to give 33 as a yellow solid (350 mg, 35% yield). ¹H NMR (DMSO- d_6 , 400 MHz) δ 3.31 (s, 6H), 3.78 (t, 4H, J=4.8 Hz), 3.95 (t, 4H, J=4.8 Hz), 4.35 (d, 2H, J=5.3 Hz), 4.78 (t, 1H, J=5.3 Hz), 6.67 (d, 1H, J=3.5 Hz), 7.27 (d, 1H, J=3.5 Hz), 7.52 (d, 2H, J=6.5 Hz), 7.57 (d, 2H, J=8.8 Hz), 8.35 (d, 2H, J = 8.8 Hz), 8.40 (d, 2H, J = 6.5 Hz), 9.15 (s, 1H), 9.32 (s, 1H). MS (ESI): m/z 504 [M + H]. HRMS calcd for C₂₆H₂₉N₇O₄ [M + H] 504.2354, obsd 504.2358. HPLC purity 95%.

1-[4-[4-Morpholin-4-yl-7-(2-oxoethyl)-7H-pyrrolo[2,3-d]pyri $midin-2-yl]phenyl}-3-pyridin-4-ylurea (34). A mixture of$ $1-<math>\{4-[7-(2,2-dimethoxyethyl)-4-morpholin-4-yl-7H-pyrrolo [2,3-d]pyrimidin-2-yl]phenyl}-3-pyridin-4-ylurea (33) (300$ mg, 0.6 mmol), dioxane (3 mL), and 6 M HCl (3 mL) washeated at 70 °C for 3 h and cooled to room temperature. Themixture was concentrated in vacuo, and the residue wastriturated with EtOAc. The resulting solid was collected byfiltration and washed with EtOAc to give 34 as an off-white $solid (479 mg, 85% yield). ¹H NMR (DMSO-d₆, 400 MHz) <math>\delta$ 3.79 (t, 4H, J = 4.5 Hz), 3.96 (t, 4H, J = 4.5 Hz), 5.21(s, 2H), 6.74 (d, 1H, J = 3.6 Hz), 7.25 (d, 1H, J = 3.6 Hz), 7.60 (d, 2H, J = 8.6 Hz), 7.94 (d, 2H, J = 6.7 Hz), 8.35 (d, 2H, J = 8.6 Hz), 8.61 (d, 2H, J = 6.7 Hz), 9.72 (s, 1H), 9.81 (s, 1H), 10.62 (s, 1H). MS (ESI): m/z 458 [M + H]. HPLC purity 95%.

1-{4-[4-Morpholin-4-yl-7-(2-pyrrolidin-1-ylethyl)-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]phenyl}-3-pyridin-4-ylurea (35). To a solution of 1-{4-[4-morpholin-4-yl-7-(2-oxoethyl)-7*H*-pyrrolo-[2,3-*d*]pyrimidin-2-yl]phenyl}-3-pyridin-4-ylurea (34) (24 mg, 0.05 mmol) in MeOH (2 mL) were added pyrrolidine (22 mg, 0.3 mmol), ZnCl₂ (14 mg, 0.1 mmol), and NaBH₃CN (6 mg, 0.1 mmol). The resulting mixture was stirred at room temperature for 2 h, and 0.5 mL of NaOH (1 M in water) was added. The solvent was evaporated, and the residue was subjected to HPLC separation to give 35 as an off-white solid (9.2 mg, 25% yield). MS (ESI): m/z 513 [M + H]. HRMS calcd for C₂₈H₃₂N₈O₂ [M + H] 513.2721, obsd 513.2718. HPLC purity 95%.

1-{4-[4-Morpholin-4-yl-7-(2-piperidin-1-ylethyl)-7*H*-pyrrolo-[2,3-*d*]pyrimidin-2-yl]phenyl}-3-pyridin-4-ylurea (36). Compound 36 was prepared from 34 to give an off-white solid (27% yield), according to the procedure described for 35, using piperidine. MS (ESI): m/z 527 [M + H]. HRMS calcd for C₂₉H₃₄N₈O₂ [M + H] 527.2880, obsd 527.2877. HPLC purity 95.7%.

1-{**4-**[7-(**2-**{[**2-**(**Dimethylamino**)**ethyl**]**amino**}**ethyl**)-**4-morpholin-4-yl-7H-pyrrolo**[**2**,**3**-*d*]**pyrimidin-2-yl**]**phenyl**}-**3-pyridin-4-ylurea** (**37**). Compound **37** was prepared from **34** to give an offwhite solid (37% yield), according to the procedure described for **35**, using *N*,*N*-dimethylethylenediamine. ¹H NMR (DMSO*d*₆, 400 MHz) δ 2.81 (s, 6H), 3.33 (m, 2H), 3.42 (m, 2H), 3.54 (t, 2H, *J*=6.1 Hz), 3.78 (t, 4H, *J*=4.5 Hz), 3.96 (m, 4H), 4.58 (d, 2H, *J*=6.3 Hz), 6.77 (d, 1H, *J*=3.6 Hz), 7.32 (d, 1H, *J*=3.6 Hz), 7.66 (d, 2H, *J*=8.7 Hz), 7.98 (d, 2H, *J*=6.8 Hz), 8.42 (d, 2H, *J*=8.7 Hz), 8.63 (d, 2H, *J*=6.8 Hz), 10.46 (s, 1H), 11.38 (s, 1H). MS (ESI): *m/z* 530 [M + H]. HRMS calcd for C₂₈H₃₅N₉O₂ [M + H] 530.2986, obsd 530.2976. HPLC purity 95%. **1-(4-{7-[2-(4-Methylpiperazin-1-yl)ethyl]-4-morpholin-4-yl-***7H*-pyrrolo[2,3-*d*]pyrimidin-2-yl}phenyl)-3-pyridin-4-ylurea (38). Compound 38 was prepared from 34 to give an off-white solid (42% yield), according to the procedure described for 35, using 1-methylpiperazine. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 2.74 (s, 3H), 2.95 (t, 2H, *J*=6.0 Hz), 3.30 (br, 8H), 3.78 (t, 4H, *J*=4.5 Hz), 3.95 (t, 4H, *J*=4.5 Hz), 4.42 (t, 2H, *J*=6.0 Hz), 6.68 (d, 1H, *J*=3.6 Hz), 7.35 (d, 1H, *J*=3.6 Hz), 7.66 (d, 2H, *J*=8.7 Hz), 7.98 (d, 2H, *J*=7.0 Hz), 8.38 (d, 2H, *J*=8.7 Hz), 8.63 (d, 2H, *J*=7.0 Hz), 10.46 (s, 1H), 11.41 (s, 1H). MS (ESI): *m/z* 542 [M + H]. HRMS calcd for C₂₉H₃₅N₉O₂ [M + H] 542.2986, obsd 542.2981. HPLC purity 96.5%.

1-{**4-**[**4-**Morpholin-**4-**yl-**7-**(**2-**piperazin-**1-**ylethyl)-**7***H*-pyrrolo-[**2**,3-*d*]pyrimidin-**2-**yl]phenyl}-**3-**pyridin-**4-**ylurea (**39**). Compound **39** was prepared from **34** to give an off-white solid (39% yield), according to the procedure described for **35**, using piperazine. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 2.90 (br, 4H), 2.99 (br, 2H), 3.07 (br, 4H), 3.78 (t, 4H, *J*=4.5 Hz), 3.95 (t, 4H, *J*=4.5 Hz), 4.43 (t, 2H, *J*=6.0 Hz), 6.69 (d, 1H, *J*=3.6 Hz), 7.35 (d, 1H, *J*=3.6 Hz), 7.66 (d, 2H, *J*=8.8 Hz), 7.98 (d, 2H, *J*=7.0 Hz), 8.38 (d, 2H, *J*=8.8 Hz), 8.62 (d, 2H, *J*=7.0 Hz), 10.40 (s, 1H), 11.40 (s, 1H). MS (ESI): *m/z* 528 [M + H]. HRMS calcd for C₂₈H₃₃N₉O₂ [M + H] 528.2830, obsd 528.2828. HPLC purity 95.5%.

1-{4-[7-(2-Hydroxyethyl)-4-morpholin-4-yl-7H-pyrrolo[2,3-d]pyrimidin-2-yl]phenyl}-3-pyridin-4-ylurea (40). To a stirred mixture of 1-{4-[4-morpholin-4-yl-7-(2-oxoethyl)-7H-pyrrolo[2,3d]pyrimidin-2-yl]phenyl}-3-pyridin-4-ylurea (34) (215 mg, 0.47 mmol), MeOH (4 mL), and THF (4 mL) was added NaBH₄ (27 mg, 0.7 mmol). The resulting mixture was stirred at room temperature for 30 min, and 2 mL of NaOH (1 M in water) was added. The mixture was concentrated, and the residue was subjected to HPLC separation to give 40 as an off-white solid (165 mg, 76% yield). ¹H NMR (DMSO- d_6 , 400 MHz) δ 3.78 (t, 6H, J = 5.0 Hz, 3.94 (t, 4H, J = 5.0 Hz), 4.29 (t, 2H, J = 5.5 Hz),4.96 (t, 1H, J=5.5 Hz), 6.65 (d, 1H, J=3.8 Hz), 7.29 (d, 1H, J= 3.8 Hz), 7.45 (d, 2H, J=6.3 Hz), 7.56 (d, 2H, J=8.6 Hz), 8.34 (d, 2H, J=8.6 Hz), 8.37 (d, 2H, J=6.3 Hz), 9.06 (s, 1H), 9.13 (s, 1H). MS (ESI): m/z 460 [M + H]. HRMS calcd for C₂₄H₂₅N₇O₃ [M + H] 460.2092, obsd 460.2092. HPLC purity 98.1%

4-({[4-(7-(2,2,2-Trifluoroethyl)-4-morpholin-4-yl-7*H*-pyrrolo-[2,3-*d*]pyrimidin-2-yl)phenyl]carbamoyl}amino)benzoic Acid (44). Step 1. To a solution of 4-[7-(2,2,2-trifluoroethyl)-4-morpholin-4-yl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]aniline (42) (479 mg, 1.3 mmol) in CH₂Cl₂ (10 mL) was added methyl 4-isocyanatobenzoate (269 mg, 1.5 mmol), and the resulting mixture was stirred at room temperature overnight. The resulting solid was collected by filtration and washed with CH₂Cl₂ to give methyl 4-[({4-[4-morpholin-4-yl-7-(2,2,2-trifluoroethyl)-7*H*-pyrrolo-[2,3-*d*]pyrimidin-2-yl]phenyl}carbamoyl)amino]benzoate as an off-white solid (539 mg, 77% yield). MS (ESI): *m/z* 555 [M + H].

Step 2. To a solution of methyl 4-[({4-[4-morpholin-4-yl-7-(2,2,2-trifluoroethyl)-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]phenyl}-carbamoyl)amino]benzoate (500 mg, 0.9 mmol) in MeOH (30 mL) and THF (10 mL) was added 1 N NaOH aqueous solution (2.7 mL), and the mixture was heated at 70 °C overnight. The mixture was cooled to room temperature and concentrated. The residue was treated water and acidified to pH 4-5 by addition of 1 N HCl, and the resulting solid was collected by filtration, washed with water, and dried in air to give **44** as an off-white solid (486 mg, 100% yield). MS (ESI): m/z 541 [M + H].

N-[2-(Dimethylamino)ethyl]-*N*-methyl-4-[($\{4-[4-morpholin-4-yl-7-(2,2,2-trifluoroethyl])-7H-pyrrolo[2,3-$ *d* $]pyrimidin-2-yl]phe-nyl]carbamoyl)amino]benzamide (46). To a solution of 4-({[4-(7-(2,2,2-trifluoroethyl])-4-morpholin-4-yl-7H-pyrrolo[2,3-$ *d* $]pyrimidin-2-yl]phenyl]carbamoyl}amino)benzoic acid (44) (32 mg, 0.06 mmol) in THF (2 mL) were added$ *N*,*N*,*N'*-trimethylethylenediamine (12 mg, 0.12 mmol), Et₃N (12 mg, 0.12 mmol), HOBt (16 mg, 0.12 mmol), and EDCI (23 mg,

0.12 mmol). The resulting mixture was stirred at room temperature overnight and concentrated. The residue was subjected to HPLC separation to give **46** as an off-white solid (TFA salt, 38.6 mg, 87% yield). ¹H NMR (DMSO- d_6 , 400 MHz) δ 2.83 (br, 6H), 3.02 (s, 3H), 3.35 (q, 2H, J=5.8 Hz), 3.79 (br, 6H), 3.97 (br, 4H), 5.19 (q, 2H, J=8.6 Hz), 6.82 (d, 1H, J=3.8 Hz), 7.35 (d, 1H, J= 3.8 Hz), 7.47 (d, 2H, J=8.3 Hz), 7.57 (t, 4H, J=8.3 Hz), 8.36 (d, 2H, J=8.8 Hz), 9.48 (s, 1H), 9.54 (s, 1H), 10.03 (br, 1H). MS (ESI): m/z 625 [M + H]. HRMS calcd for C₃₁H₃₅F₃N₈O₃ [M + H] 625.2857, obsd 625.2857. HPLC purity 96.7%.

N-[2-(Dimethylamino)ethyl]-4-[({4-[4-morpholin-4-yl-7-(2,2, 2-trifluoroethyl)-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]phenyl}carbamoyl)amino]benzamide (47). Compound 47 was prepared from 44 to give an off-white solid (TFA salt, 99% yield), according to the procedure described for 46, using *N*,*N*-dimethylethylenediamine. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 2.83 (s, 3H), 2.84 (s, 3H), 3.26 (q, 2H, *J*=5.8 Hz), 3.62 (q, 2H, *J*=5.8 Hz), 3.78 (t, 4H, *J*=4.8 Hz), 3.96 (t, 4H, *J*=4.8 Hz), 5.18 (q, 2H, *J*=8.6 Hz), 6.81 (d, 1H, *J*=3.8 Hz), 7.34 (d, 1H, *J*=3.8 Hz), 7.57 (dd, 4H, *J*=8.6, 1.8 Hz), 7.87 (d, 2H, *J*=8.6 Hz), 8.35 (d, 2H, *J*=8.6 Hz), 8.67 (t, 1H, *J*=5.8 Hz), 9.51 (s, 1H), 9.59 (s, 1H), 9.94 (br, 1H). MS (ESI): *m/z* 611 [M + H]. HRMS calcd for C₃₀H₃₃F₃N₈O₃ [M + H] 611.2700, obsd 611.2700. HPLC purity 96.8%.

1-{4-[(4-Methylpiperazin-1-yl)carbonyl]phenyl}-3-{4-[4-morpholin-4-yl-7-(2,2,2-trifluoroethyl)-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl]phenyl}urea (48). Compound 48 was prepared from 44 to give an off-white solid (TFA salt, 97% yield), according to the procedure described for 46, using 1-methylpiperazine. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 2.78 (s, 3/2 H), 2.79 (s, 3/2H), 3.07 (m, 2H), 3.40 (m, 4H), 3.78 (t, 4H, *J*=4.8 Hz), 3.96 (t, 4H, *J*=4.8 Hz), 5.18 (q, 2H, *J*=8.6 Hz), 6.81 (d, 1H, *J*=3.5 Hz), 7.34 (d, 1H, *J*=3.5 Hz), 7.34 (d, 1H, *J*=3.5 Hz), 7.42 (d, 2H, *J*=8.6 Hz), 7.57 (d, 4H, *J*=8.6 Hz), 8.35 (d, 2H, *J*=8.6 Hz), 9.42 (s, 1H), 9.50 (s, 1H), 10.94 (s, 1H). MS (ESI): *m/z* 623 [M + H]. HRMS calcd for C₃₁H₃₃F₃N₈O₃ [M + H] 623.2700, obsd 623.2700. HPLC purity 95%.

1-(4-{[4-(Dimethylamino)piperidin-1-yl]carbonyl}phenyl)-3-{4-[4-morpholin-4-yl-7-(2,2,2-trifluoroethyl)-7*H***-pyrrolo[2,3-***d***]pyrimidin-2-yl]phenyl}urea (49). Compound 49 was prepared from 44 to give an off-white solid (HCl salt, 68% yield), according to the procedure described for 46, using 4-dimethylaminopiperidine. ¹H NMR (DMSO-***d***₆, 400 MHz) δ 1.61 (m, 2H), 2.04 (br, 2H), 2.72 (s, 3H), 2.74 (s, 3H), 3.43 (m, 1H), 3.78 (t, 4H, J=4.5 Hz), 3.96 (t, 4H, J=4.5 Hz), 5.18 (q, 2H, J=8.8 Hz), 6.81 (d, 1H, J=3.8 Hz), 7.33 (d, 1H, J=3.8 Hz), 7.38 (d, 2H, J= 8.8 Hz), 7.55 (d, 2H, J=8.8 Hz), 7.57 (d, 2H, J=8.8 Hz), 8.35 (d, 2H, J=8.8 Hz), 9.31 (s, 1H), 9.35 (s, 1H), 10.33 (s, 1H). MS (ESI):** *m/z* **651 [M + H]. HRMS calcd for C₃₃H₃₇F₃N₈O₃ [M + H] 651.3013, obsd 651.3013. HPLC purity 95%.**

4-(2-Chloro-7-ethyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-yl)morpholine (41). Compound 41 was prepared from 16 to give an offwhite solid, according to the procedure described for 30, using iodoethane. MS (ESI): m/z 267 [M + H].

4-(7-Ethyl-4-morpholino-7*H***-pyrrolo[2,3-***d***]pyrimidin-2-yl)aniline (43). Compound 43 was prepared from 41 to give an offwhite solid, according to the procedure described for 42, using 4-aminophenylboronic acid pinacol ester. MS (ESI): m/z 324 [M + H].**

4-({[**4**-(7-Ethyl-4-morpholin-4-yl-7*H*-pyrrolo[2,3-*d*]pyrimidin-**2**-yl)phenyl]carbamoyl} amino)benzoic Acid (45). Step 1. To a solution of 4-(7-ethyl-4-morpholin-4-yl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl)aniline (**43**) (1.72 g, 5.3 mmol) in CH₂Cl₂ (50 mL) was added methyl 4-isocyanatobenzoate (1.13 g, 6.4 mmol), and the resulting mixture was stirred at room temperature overnight. The resulting solid was collected by filtration and washed with CH₂Cl₂ to give methyl 4-({[4-(7-ethyl-4-morpholin-4-yl-7*H*-pyrrolo[2,3*d*]pyrimidin-2-yl)phenyl]carbamoyl}amino)benzoate as an offwhite solid (1.81 g, 68% yield). MS (ESI): *m/z* 501 [M + H].

Step 2. To a solution of methyl 4-({[4-(7-ethyl-4-morpholin-4yl-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-yl)phenyl]carbamoyl}amino)benzoate (1.81 g, 3.6 mmol) in MeOH (50 mL) and THF (20 mL) was added 1 N NaOH aqueous solution (18 mL), and the mixture was heated at 70 °C for 3 h. The mixture was cooled to room temperature and concentrated. The residue was treated with water and acidified to pH 3-4 by addition of 1 N HCl. The resulting solid was collected by filtration, washed with water, and dried in air to give **45** as an off-white solid (1.65 g, 94% yield). MS (ESI): m/z 487 [M + H].

N-[2-(Dimethylamino)ethyl]-4-({[4-(7-ethyl-4-morpholin-4-yl-*7H*-pyrrolo[2,3-*d*]pyrimidin-2-yl)phenyl]carbamoyl} amino)benzamide (50). Compound 50 was prepared from 45 to give an offwhite solid (54% yield), according to the procedure described for 46, using *N*,*N*-dimethylethylenediamine. ¹H NMR (DMSO*d*₆, 400 MHz) δ 1.40 (t, 3H, *J* = 7.3 Hz), 2.17 (s, 6H), 2.39 (t, 2H, *J* = 6.8 Hz), 3.33 (m, 2H), 3.77 (t, 4H, *J* = 4.8 Hz), 3.94 (t, 4H, *J* = 4.8 Hz), 4.27 (q, 2H, *J* = 7.3 Hz), 6.66 (d, 1H, *J* = 3.8 Hz), 7.33 (d, 1H, *J* = 3.8 Hz), 7.53 (d, 2H, *J* = 8.6 Hz), 7.56 (d, 2H, *J* = 8.6 Hz), 7.79 (d, 2H, *J* = 8.6 Hz), 8.23 (t, 1H, *J* = 5.5 Hz), 8.34 (d, 2H, *J* = 8.6 Hz), 8.98 (br, 2H). MS (ESI): *m*/*z* 557 [M + H]. HRMS calcd for C₃₀H₃₆N₈O₃ [M + H] 557.2983, obsd 557.2983. HPLC purity 98.6%.

1-[4-(7-Ethyl-4-morpholin-4-yl-7*H***-pyrrolo[2,3-***d***]pyrimidin-2yl)phenyl]-3-{4-[(4-methylpiperazin-1-yl)carbonyl]phenyl}urea (51). Compound 51 was prepared from 45 to give an off-white solid (35% yield), according to the procedure described for 46, using 1-methylpiperazine. ¹H NMR (DMSO-***d***₆, 400 MHz) \delta 1.40 (t, 3H,** *J***=7.1 Hz), 2.20 (s, 3H), 2.31 (br, 4H), 3.49 (br, 4H), 3.77 (t, 4H,** *J***=5.0 Hz), 3.94 (t, 4H,** *J***=5.0 Hz), 4.27 (q, 2H,** *J***= 7.1 Hz), 6.66 (d, 1H,** *J***=3.8 Hz), 7.32 (d, 1H,** *J***=3.8 Hz), 7.34 (d, 2H,** *J***=8.8 Hz), 7.53 (d, 2H,** *J***=8.8 Hz), 7.56 (d, 2H,** *J***=8.8 Hz), 8.34 (d, 2H,** *J***=8.8 Hz), 8.93 (s, 1H), 8.94 (s, 1H). MS (ESI):** *m/z* **569 [M + H]. HRMS calcd for C₃₁H₃₆N₈O₃ [M + H] 569.2983, obsd 569.2983. HPLC purity 99.6%.**

1-[4-(7-Ethyl-4-morpholin-4-yl-7*H***-pyrrolo[2,3-***d***]pyrimidin-2yl)phenyl]-3-[4-(piperazin-1-ylcarbonyl)phenyl]urea (52). Compound 52 was prepared from 45 to give an off-white solid (46% yield), according to the procedure described for 46, using piperazine. ¹H NMR (DMSO-***d***₆, 400 MHz) \delta 1.40 (t, 3H,** *J* **= 7.1 Hz), 2.68 (br, 4H), 3.41 (br, 4H), 3.78 (t, 4H,** *J***=5.0 Hz), 3.94 (t, 4H,** *J***=5.0 Hz), 4.27 (q, 2H,** *J***=7.1 Hz), 6.66 (d, 1H,** *J***=3.5 Hz), 7.32 (d, 1H,** *J***=3.5 Hz), 7.33 (d, 2H,** *J***=8.6 Hz), 7.53 (d, 2H,** *J***=8.6 Hz), 7.56 (d, 2H,** *J***=8.6 Hz), 8.34 (d, 2H,** *J***=8.6 Hz), 8.98 (s, 1H), 9.01 (s, 1H). MS (ESI):** *m/z* **555 [M + H]. HRMS calcd for C₃₀H₃₄N₈O₃ [M + H] 555.2827, obsd 555.2830. HPLC purity 95.2%.**

Acknowledgment. We thank Wyeth Chemical Technologies Department for compound identification and the pharmaceutical profiling results. We also thank Dr. Derek Cole for his helpful suggestions regarding this manuscript.

References

- Vivanco, I.; Sawyers, C. L. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat. Rev. Cancer 2002, 2, 489–501.
- (2) Vanhaesebroeck, B.; Leevers, S. J.; Ahmadi, K.; Timms, J.; Katso, R.; Driscoll, P. C.; Woscholski, R.; Parker, P. J.; Waterfield, M. D. Synthesis and function of 3-phosphorylated inositol lipids. *Annu. Rev. Biochem.* 2001, *70*, 535–602.
- (3) Vanhaesebroeck, B.; Leevers, S. J.; Panayotou, G.; Waterfield, M. D. Phosphoinositide 3-kinases: a conserved family of signal transducers. *Trends Biochem. Sci.* 1997, 22, 267–272.
- (4) Shayesteh, L.; Lu, Y.; Kuo, W. L.; Baldocchi, R.; Godfrey, T.; Collins, C.; Pinkel, D.; Powell, B.; Mills, G. B.; Gray, J. W. PIK3CA is implicated as an oncogene in ovarian cancer. *Nat. Genet.* **1999**, *21*, 99–102.
- (5) Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S. M.; Riggins, G. J.; Willson, J. K. V.; Markowitz, S.; Kinzler, K. W.; Vogelstein, B.; Velculescu, V. E. High frequency of mutations of the PIK3CA gene in human cancers. *Science* 2004, 304, 554.
- (6) Campbell, I. G.; Russell, S. E.; David; Choong, D. Y.; Montgomery, K. G.; Ciavarella, M. L.; Hooi, C. S.; Cristiano, B. E.; Pearson, R. B.; Wayne, A.; Phillips, W. A. Mutation of the *PIK3CA* gene in ovarian and breast cancer. *Cancer Res.* 2004, 64, 7678–7681.

- (7) Parsons, D. W.; Wang, T. L.; Samuels, Y.; Bardelli, A.; Cummins, J. M.; DeLong, L.; Silliman, N.; Ptak, J.; Szabo, S.; Willson, J. K.; Markowitz, S.; Kinzler, K. W.; Vogelstein, B.; Lengauer, C.; Velculescu, V. E. Colorectal cancer: mutations in a signaling pathway. *Nature* 2005, 436, 792.
- (8) Cully, M.; You, H.; Levine, A. J.; Mak, T. W. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. *Nat. Rev. Cancer* 2006, *6*, 184–192.
- (9) Salmena, L.; Carracedo, A.; Pandolfi, P. P. Tenets of PTEN tumor suppression. *Cell* 2008, 133, 403–414.
- (10) Sulis, M. L.; Parsons, R. PTEN: from pathology to biology. *Trends Cell Biol.* **2003**, *13*, 478–483.
- (11) Li, J.; Yen, C.; Liaw, D.; Podsypanina, K.; Bose, S.; Wang, S. I.; Puc, J.; Miliaresis, C.; Rodgers, L.; McCombie, R.; Bigner, S. H.; Giovanella, B. C.; Ittmann, M.; Tycko, B.; Hibshoosh, H.; Wigler, M. H.; Parsons, R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. *Science* 1997, 275, 1943–1947.
- (12) Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Okada, M.; Ohta, M.; Tsukamoto, S.; Parker, P.; Workman, P.; Waterfield, M. Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel PI3 kinase p110α inhibitors. *Bioorg. Med. Chem.* 2006, *14*, 6847–6858.
- (13) Schultz, R. M.; Merriman, R. L.; Andis, S. L.; Bonjouklian, R.; Grindey, G. B.; Rutherford, P. G.; Gallegos, A.; Massey, K.; Powis, G. In vitro and in vivo antitumor activity of the phosphatidylinositol-3-kinase inhibitor, wortmannin. *Anticancer Res.* 1995, 15, 1135–1139.
- (14) Vlahos, C. J.; Matter, W. F.; Hui, K. Y.; Brown, R. F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8phenyl-4*H*-1-benzopyran-4-one (LY294002). *J. Biol. Chem.* 1994, 269, 5241–5248.
- (15) Hennessy, B. T.; Smith, D. L.; Ram, P. T.; Lu, Y.; Mills, G. B. Exploiting the PI3K/AKT pathway for cancer drug discovery. *Nat. Rev. Drug Discovery* 2005, *4*, 988–1004.
- (16) Drees, B. E.; Mills, G. B.; Rommel, C.; Prestwich, G. D. Therapeutic potential of phosphoinositide 3-kinase inhibitors. *Expert Opin. Ther. Pat.* 2004, *14*, 703–732.
 (17) Norman, B. H.; Shih, C; Toth, J. E.; Ray, J. E.; Dodge, J. A.;
- (17) Norman, B. H.; Shih, C; Toth, J. E.; Ray, J. E.; Dodge, J. A.; Johnson, D. W.; Rutherford, P. G.; Schultz, R. M.; Worzalla, J. F.; Vlahos, C. J. Studies on the mechanism of phosphatidylinositol 3kinase inhibition by wortmannin and related analogs. *J. Med. Chem.* **1996**, *39*, 1106–1111.
- (18) Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S.; Raynaud, F. I.; Workman, P.; Waterfield, M. D.; Parker, P. Synthesis and biological evaluation of pyrido[3',2':4,5]furo[3,2-*d*]pyrimidine derivatives as novel PI3 kinase p110α inhibitors. *Bioorg. Med. Chem. Lett.* 2007, *17*, 2438–2442.
 (19) Yaguchi, S.; Fukui, Y.; Koshimizu, I.; Yoshimi, H.; Matsuno, T.;
- (19) Yaguchi, S.; Fukui, Y.; Koshimizu, I.; Yoshimi, H.; Matsuno, T.; Gouda, H.; Hirono, S.; Yamazaki, K.; Yamori, T. Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J. Natl. Cancer Inst. 2006, 98, 545–556.
- (20) Kong, D.; Yamori, T. ZSTK474 is an ATP-competitive inhibitor of class I phosphatidylinositol 3 kinase isoforms. *Cancer Sci.* 2007, 98, 1638–1642.
- (21) Folkes, A. J.; Ahmadi, K.; Alderton, W. K.; Alix, S.; Baker, S. J.; Box, G.; Chuckowree, I. S.; Clarke, P. A.; Depledge, P.; Eccles, S. A.; Friedman, L. S.; Hayes, A.; Hancox, T. C.; Kugendradas, A.; Lensun, L.; Moore, P.; Olivero, A. G.; Pang, J.; Patel, S.; Pergl-Wilson, G. H.; Raynaud, F. I.; Robson, A.; Saghir, N.; Salphati, L.; Sohal, S.; Ultsch, M. H.; Valenti, M.; Wallweber, H. J.; Wan, N. C.; Wiesmann, C.; Workman, P.; Zhyvoloup, A.; Zvelebil, M. J.; Shuttleworth, S. J. The identification of 2-(1*H*indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-*d*]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I P13 kinase for the treatment of cancer. J. Med. Chem. 2008, 51, 5522–5532.
- (22) Stauffer, F.; Maira, S. M.; Furet, P.; Garcia-Echeverria, C. Imidazo[4,5-c]quinolines as inhibitors of the PI3K/PKB-pathway. *Bioorg. Med. Chem. Lett.* 2008, 18, 1027–1030.
- (23) Maira, S.; Stauffer, F.; Brueggen, J.; Furet, P.; Schnell, C.; Fritsch, C.; Brachmann, S.; Chene, P.; De Pover, A.; Schoemaker, K.; Fabbro, D.; Gabriel, D.; Simonen, M.; Murphy, L.; Finan, P.; Sellers, W.; Garcia-Echeverria, C. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. *Mol. Cancer Ther.* **2008**, *7*, 1851– 1863.
- (24) Venkatesan, A. M.; Dehnhardt, C. M.; Chen, Z.; Delos Santos, E.; Santos, O.; Bursavich, M.; Gilbert, A. M.; Ellingboe, J. W.; Ayral-Kaloustian, S.; Brooijmans, B.; Mallon, R.; Hollander, I.;

Feldberg, L.; Lucas, J.; Yu, K.; Gibbons, J.; Abraham, R.; Mansour, T. S. Novel imidazolopyrimidines as dual PI3-Kinase/ mTOR Inhibitors. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 653–656.

- (25) Dehnhardt, C. M.; Venkatesan, A. M.; Delos Santos, E.; Chen, Z.; Santos, O.; Ayral-Kaloustian, S.; Brooijmans, B.; Mallon, R.; Hollander, I.; Feldberg, L.; Lucas, J.; Yu, K.; Gibbons, J.; Abraham, R.; Mansour, T. S. Lead optimization of N-3-substituted-7-morpholino-triazolopyrimidines as dual PI3K/mTor inhibitors: discovery of PKI-402. J. Med. Chem. 2010, 53, 798–810.
- (26) Zask, A.; Verheijen, J. C.; Curran, K.; Kaplan, J.; Richard, D. J.; Nowak, P.; Malwitz, D. J.; Brooijmans, N.; Bard, J.; Svenson, K.; Lucas, J.; Toral-Barza, L.; Zhang, W. G.; Hollander, I.; Gibbons, J. J.; Abraham, R. T.; Ayral-Kaloustian, S.; Mansour, T. S.; Yu, K. ATP-competitive inhibitors of the mammalian target of rapamycin: design and synthesis of highly potent and selective pyrazolopyrimidines. J. Med. Chem. 2009, 52, 5013–5016.
 (27) Chen, Z.; Venkatesan, A. M.; Dehndardt, C. M.; Ayral-Kaloustian,
- (27) Chen, Z.; Venkatesan, A. M.; Dehndardt, C. M.; Ayral-Kaloustian, S.; Mansour, T.; Brooijmans, N.; Mallon, R.; Hollander, I.; Yu, K. Discovery of Novel Pyrrolo[3,2-d]pyrimidine Derivatives as PI3-Kinase Inhibitors. *Abstracts of Papers*, 238th National Meeting of the

American Chemical Society, Washington, DC, August 16–20, 2009; American Chemical Society: Washington, DC, 2009; MEDI-363. Noell, C. W.; Robins, R. K. Aromaticity in heterocyclic systems. II.

- (28) Noell, C. W.; Robins, R. K. Aromaticity in heterocyclic systems. II. The application of n.m.r. in a study of the synthesis and structure of certain imidazo[1,2-c]pyrimidines and related pyrrolo[2,3d]pyrimidines. J. Heterocycl. Chem. 1964, 1, 34–41.
- (29) Senda, S.; Hirota, K. Pyrimidine derivatives and related compounds. XXII. Synthesis and pharmacological properties of 7-deazaxanthine derivatives. *Chem. Pharm. Bull.* 1974, 22, 1459– 1467.
- (30) The homology model was built with Prime 1.6 (*Prime*, version 1.6; Schrodinger, LLC: New York, 2007) using an in-house X-ray structure of PI3K-g in complex with a related pyrazolopyrimidine (3IBE.pdb) as the template. Docking studies were performed using Glide, version 4.5, initially, and version 5.5 (*Glide*, version 5.5; Schrodinger, LLC: New York, 2009) more recently. Docking studies were either performed without constraints or with a hydrogen bonding constraint to the backbone-NH of Val851. Figure 2 was made using PyMOL (DeLano, W. L. *The PyMOL Molecular Graphics System*; DeLano Scientific LLC: Palo Alto, CA, 2008).